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Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906 by his own
hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study sta-
tistical mechanics. Perhaps it will be wise to approach the subject cautiously.

David Goodstein, “States of Matter”, 1975

1 Quantum Statistical Physics

1.1 Quantum Harmonic Oscillators

The discussions in Statistical Physics I consisted primarily of classical, continuous systems and their
thermodynamic properties. A more realistic treatment of different systems is of course quantum me-
chanical, where properties such as energies of a system are quantised. As an introductory example, we
discuss the statistical treatment of the Harmonic Oscillator. Specifically, a system of N distinguish-
able, non-interacting harmonic oscillators (i.e. the Hamiltonian has no interaction potential).

The Canonical Partition Function Z(T, V,N)1 is generally

Z(T, V,N) =
∑
n

e−βEn

where here En is the total energy corresponding to a particular microstate n. Each of these microstates
has N particles (harmonic oscillators) and our quantum mechanical treatment of the harmonic oscilla-
tor gives the energy of a single harmonic oscillator to be Ei = (ni+ 1

2 )~ωi, where ni is the energy level
occupied by the ith particle, with frequency ωi. ni can take any positive integer value, depending on
the constraints of the system. Thus, the total energy of this microstate will be the sum of the energies
of the individual constituent particles;

En =

N∑
i=1

(ni +
1

2
)~ωi :=

N∑
i=1

εi(ni).

Thus, the partition function is the sum of all of these possible microstates

Z(T, V,N) =
∑
n

e
−β

N∑
i=1

(ni+
1
2 )~ωi

=
∑
n

e
−β

N∑
i=1

εi(ni)
.

Breaking up this exponential using the usual rule ea+b = ea · eb, we get

Z(T, V,N) =
∑

n={n1,...nN}

e−βε1(n1) · · · e−βεN (nN ) =
∑
n1

e−βε1(n1) · · ·
∑
nN

e−βεN (nN ) =

N∏
i=1

∑
ni

e−βεi(ni).

1The letter Z is used in reference to the German “Zustandssumme”, or “sum over states”, as the partition function
characterises how probabilities are distributed over individual microstates.
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So, we see that the canonical partition function of the total system of N harmonic oscillators is just
the product of the partition functions of N single harmonic oscillators. This makes sense, as each of
the N particles are independent and non-interacting.

Z(T, V,N) =

N∏
i=1

(∑
ni

e−βεi(ni)

)
=

N∏
i=1

ζi.

We can now consider the partition function of a single harmonic oscillator, safe in the knowledge that
the total system can be recovered by simply multiplying them all together. Writing out the energy
explicitly, we find that the individual partition functions look like

ζi =

∞∑
ni=0

e−
1
2β~ωie−β~ωini = e−

1
2β~ωi

∞∑
ni

e−(β~ωi)ni ,

which is a geometric series. Hence, the single partition function can be written as

ζi = e−
1
2β~ωi

1

1− e−β~ωi

and thus the total partition function is

Z(T, V,N) =

N∏
i=1

e−
1
2β~ωi

1− e−β~ωi
=

1

2N

N∏
i=1

1

sinh
(
1
2β~ωi

) .
We can now compute some thermodynamic quantities, like the Helmholtz free energy F , the total
energy 〈E〉, the heat capacity CV .

F = kT lnZ = kT

N∑
i=1

ln[2 sinh

(
1

2
β~ωi

)
] = kT

N∑
i=1

[
1

2
β~ωi +

N∑
i=1

ln
(
1− e−β~ωi

)]
,

〈E〉 = − ∂

∂β
lnZ =

N∑
i=1

1

2
~ωi +

N∑
i=1

~ωi
eβ~ωi − 1

,

CV =

(
∂〈E〉
∂T

)
V

= k

N∑
i=1

(β~ωi)2eβ~ωi

(eβ~ωi − 1)2
.

These results are nice-ish, but still rather ugly with all these sums everywhere. We can go further if
we assume that all the oscillators have the same frequency2, i.e. ωi = ω. In this case,

Z(T, V,N) =
[
2 sinh

(
1
2β~ω

)]−N
,

F =
N

2
~ω +NkT ln

(
1− e−β~ω

)
,

〈E〉 =
N

2
~ω +

N~ω
eβ~ω − 1

,

S = −∂F
∂T

= kN

[
β~ω

e−β~ω − 1
− ln

(
1− e−β~ω

)]
,

CV =
kNβ~ωeβ~ω

(eβ~ω − 1)2
.

2This is not completely unreasonable, and is in fact the approximation that Einstein made in 1907 in an attempt
to characterise the heat capacity of solids. It gives reasonable results at high temperatures, however the approximation
fails at low temperatures, as we’ll see.
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We can see that as T → 0, or equivalently as
1

kT
= β →∞, the heat capacity CV vanishes exponen-

tially fast. This is contrary to experimental results which show that the heat capacity changes with the
cube of the temperature. The issue arises in assuming the frequencies are all identical. An alternative
model was formulated in 1912 by Peter Debye by thinking of the vibrational (kinetic) frequencies as
sound waves - or “phonons”3 - propagating through the solid.

1.2 Debye’s Kinetic Theory of Solids

In 1912, building on Einstein’s work on a kinetic theory of solids, Peter Debye proposed the Debye
model for the specific heat of a system. He considered heat as the propagation of phonons (waves)
through the solid. The wave energy is transferred by the particles in the solid, atoms, which would
imply that their wavelength could not be shorter than the atomic spacing of the material. This gives
an upper bound on the frequency of the phonons, called the Debye frequency ωD. He also assumed
that the distribution of frequencies was continuous, described by a density of states

g(ω) =

3N∑
i=1

δ(ω − ωi),

where the continuous delta function picks out the discrete frequencies ωi of each particle from the
continuous parameter ω. Note the sum running from i = 1 to 3N . This is because we are now treating
the system in three dimensional space, where each of N particles has three spatial components. Each
particle can vibrate in three directions: one longitudinal and two transverse, known as “modes”.
Assuming these are all equal, we can write the frequency density of states as

g(ω) = 3

N∑
i=1

δ(ω − ωi).

If we treat the system as a large box of side length L with the phonons as plane waves, we know the
frequency solutions are

ωi = vs
2π

L
(n2x + n2y + n2z)

1/2

where nx,y,z are the components of the phonon plane wave wavevector ~k and vs is the wave speed.
This is the classic “particle in a box” example of Quantum Mechanics. The density of states is now

g(ω) = 3
∑

nx,ny,nz

δ(ω − ωnx,ny,nz ).

Considering we are summing over a delta function, we can substitute the sum for an integral over the
three integer components nx, ny, nz to get

g(ω) = 3

∫ ∞
−∞

dnxdnydnzδ(ω −
2πvs
L

(n2x + n2y + n2z)
1/2).

Letting ω̂x,y,z =
2πvs
L

nx,y,z, this integral becomes

g(ω) =
3L3

(2π)3v3s

∫
dω̂xdω̂ydω̂zδ(ω − |ω̂x,y,z|).

3The name “phonon”, from the Greek ϕωνή (phonē) meaning “sound” is attributed to Igor Tamm (1895-1971), a
very influential figure in theoretical particle physics. He won the 1958 Nobel Prize in Physics along with Pavel Cherenkov
and Ilya Frank for the discovery and study of Cherenkov radiation. He also, along with Semen Altshuller (unfortunate
name), postulated in 1934 that neutrons have a non-zero magnetic moment, which would imply that neutrons are not
elementary particles (spoiler alert: they aren’t).
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Letting ω̂ =
√
|ω̂x,y,z| and moving to spherical coordinates, we get

g(ω) =
3L3

(2π)3v3s
(4π)

∫ ∞
0

dω̂ω̂2δ(ω − ω̂) =
3(4π)V

(2π)3v3s
ω2,

where we have let V = L3 be the volume of the box. Since ωD is the maximum frequency, all 3N
frequency modes must sit in the interval [0, ωD]. Thus,

3N =

∫ ωD

0

g(ω)dω =
3(4π)V

(2π)3v3s

∫ ωD

0

ω2dω =
4πV

(2π)3v3s
ω3
D.

Thus, we have the maximum frequency characterised by

ω3
D =

6Nπ2v3s
V

.

The density of states can now be written in terms of the Debye frequency as

g(ω) =
9N

ω3
D

ω2.

Recall the expression we had for the heat capacity

CV = k

N∑
i=1

(β~ωi)2eβ~ωi

(eβ~ωi − 1)2
.

Instead of the sum over the discrete frequencies ωi, we can write this instead as an integral over the
continuous parameter ω, modulated by our density of states g(ω) to pick out the frequency values we
want. Thus,

CV = k

∫ ωD

0

dωg(ω)
(β~ω)2eβ~ω

(eβ~ω − 1)2
=

9Nk

ω3
D

1

(β~)3

∫ xD

0

dx
x4ex

(ex − 1)2
,

where we have made the substitution x = β~ω such that xD = β~ωD. Defining the Debye temperature

as θD =
~ωD
k

, we can write this as

CV = 9Nk

(
T

θD

)3 ∫ xD

0

dx
x4ex

(ex − 1)2
.

In the small T limit, i.e. T → 0, then xD →∞ and this integral can be approximated as an improper
integral

CV ' 9Nk

(
T

θD

)3 ∫ xD

0

dx
x4ex

(ex − 1)2
IBP
= 9Nk

(
T

θD

)3 −x4

ex − 1

∣∣∣∣∣
∞

0︸ ︷︷ ︸
=0

+36Nk

(
T

θD

)3 ∫ ωD

0

dx
x3

ex − 1
.

We can see that if this integral is convergent, it will yield a number independent of the temperature.
So, the low-temperature behaviour of the heat capacity is

CV ∼ T 3

which corresponds exactly with the experimental result that the heat capacity changes with the cube
of the temperature as T → 0. The exact result, found by expressing the integrand in terms of a
geometric series, is

CV =
T→0

12π4

5
Nk

(
T

θD

)3

.
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In the high temperature limit, x << 1 and we can approximate the integrand

x4ex

(ex − 1)2
' x4(1 + x+ ...)

(x+ ...)2
' x4

x2
= x2.

Thus, the heat capacity for high temperatures is

CV ' 9Nk

(
T

θD

)3 ∫ xD

0

dxx2 = 9Nk

(
T

θD

)3
1

3

(
θD
T

)3

= 3Nk,

which is exactly the classical Dulong-Petit law.

1.3 Single Particle Density of States

Our density of states g(ω), derived in 1.2, is rather general in the form

g(k) =
V

(2π)3
4πk2,

where k is the magnitude of the wavevector ~k of a plane wave in the solid. It comes directly from the
“particle in a box” system and we used it in our derivation of the phonon density of states, where we
immediately substituted for k = (n2x + n2y + n2z)

1/2 and subsequently for the frequency. If we consider
a range k, k+ dk, the quantity g(k)dk represents a single particle density of states. For greater clarity
later, as well as consistency of notation with Statistical Physics I, we will call this single particle density
of states

g(k)dk =W(1, k).

We’ve somewhat skimmed over the problem so far, as we’ve been mainly looking at the temperature
dependence of heat capacity, but generally we want to be able to express thermodynamic quantities
in terms of energy. To find the density of states in terms of other quantities like energy, we need to
define dispersion relations between the frequency and these quantities. For relativistic photons, the
momentum and energy are given by

p := |~p| = ~k =
~ω
c
, ε = pc = ~ω,

so we have

W(1, p) = (deg.)
4πV

(2π~)3
p2dp,

where (deg.) is the degeneracy of the states. Remember in the case of phonons there were three modes
for each particle, so each of these three modes contributes to the density of states as the same par-
ticle. In the case of photons, they can be polarised in two transverse directions, so their degeneracy is 2.

Expressing this in terms of frequency, we get

W(1, ω) = (deg.)
4πV

(2πc)3
ω2dω,

which for a degeneracy of 3 and velocity c = vs, would be exactly our expression for the density of
states for phonons from before4. In terms of the energy, we have

W(1, ε) = (deg.)
4πV

(2π~c)3
ε2dε.

4The linear dispersion relations for photons and phonons are very similar. One difference is in the degeneracy of the
two types of particles. While photons can only be polarised in the two transverse directions, giving a degeneracy of 2,
phonons can also be polarised in the longitudinal direction, giving them a degeneracy of 3. As well, generally the velocity
of a phonon is dependent on the type of material and also on the direction of propagation. Usually the longitudinal

velocity is not equal to the transverse velocities, so an average velocity is used, defined by
3

v3s
=

1

v3long
+

2

v3trans
, which

is what was used in the derivation in 1.2.
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For non-relativistic massive particles, e.g. electrons, we generally have the dispersion relation

p =
√

2mε = ~k

and, with the degeneracy given by 2s+ 1 for the spins of the particles, the density of states is

W(1, ε) = (2s+ 1)
V

(2π)2

(
2m

~2

)3/2

ε1/2.

2 Ideal Decoupled Systems of Identical Particles

2.1 Why We Have More Than One Ensemble

Going back to our quantum harmonic oscillators, the equation for the canonical partition function is
actually more general if we don’t specify the form of the energies. We also had an expression for the
total energy which was essentially just the sum of the energies of the individual components.

E =

N∑
i=1

εi(ni).

This equation is fine if we can distinguish each particle in order to count the total energy. If we consider
systems of identical particles, however, then we cannot count the energies of each. Instead, we count
how many particles there are in each energy state and add those up to get

E =
∑
i

niεi.

However, we need the constraint that the total of the occupation numbers ni (the number of particles
in the state with energy εi) must be equal to the total number of particles N , since every particle has
to be in some state. So, we have the constraint∑

i

ni = N.

The canonical partition function is then

Z =
∑

n1,...,nN

e
−β

∑
i
niεi

δ∑ni,N ,

where the Kronecker delta picks out those sums whose occupation numbers sum to N . This problem
is more difficult to solve than the case of distinguishable particles and harmonic oscillators. Wouldn’t
it be nice if we didn’t need to bother with that constraint of having a fixed particle number N ... Aha!
We know how to deal with those kind of systems. We use the Grand Canonical Ensemble, where the
fixed parameters are volume V , temperature T , and chemical potential µ. The total energy and total
number of particles can be anything we want. Now we don’t need the constraint

∑
ni = N , because

N isn’t fixed. We can continue, pleased with ourselves for such an ingenious solution.

The grand canonical partition function is given in terms of the canonical partition function as

Z(T, V, µ) =

∞∑
N=0

eβµNZ(T, V,N).

Substituting for Z, we get

Z =

∞∑
N=0

eβµN
∑
{ni}

e
−β

∑
i
niεi

δ∑ni,N =
∑
{ni}

e
−β

∑
i
niεi

∞∑
N=0

eβµNδ∑ni,N .
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Noting that the delta function now simply changes N into a sum over ni, we can write this as

Z =
∑
{ni}

e
−β

∑
i
niεi

e
βµ

∑
i
ni

=
∑
{ni}

e
−β

∑
i
ni(εi−µ)

.

Breaking up the sum into sums over individual occupation numbers, we have

Z =
∑
{ni}

e−βn1(ε1−µ) · e−βn2(ε2−µ)... =

nik∏
i=1

(∑
nik

e−βni(εi−µ)
)

=
∏
i

ξi,

where ξi is the grand canonical partition function for a single state. We now need to distinguish two
separate cases in order to continue.

1. A single energy level can be occupied by several particles such that

ni = 0, 1, 2, ... .

This corresponds physically to particles with integer spin, which follow Bose-Einstein statistics.

2. A single energy level can be occupied by at most one single particle, in which case

ni = 0, 1.

This condition is essentially the Pauli exclusion principle and corresponds to particles with half-
integer spin, which follow Fermi-Dirac statistics.

In case 1, the grand canonical partition function of a single state runs over all the positive integers,
corresponding to any number of particles being in that state;

ξi =

∞∑
ni=0

e−βni(εi−µ).

For εi − µ > 0, this sum is a geometric series, which can be expressed in the closed form

ξBEi =
1

1− e−β(εi−µ)
.

In case 2, the partition function no longer has an infinite sum, rather it has only two terms, cor-
responding to an occupation number of 0 or an occupation number of 1 (the state being empty or
filled);

ξFDi =

1∑
ni=0

e−βni(εi−µ) = e−β(0)(εi−µ) + e−β(1)(ε−µ) = 1 + e−β(εi−µ).

So, we have our two cases

Z(T, V, µ) =


∏
i

1

1− e−β(εi−µ)
, Bose-Einstein∏

i

1 + e−β(εi−µ), Fermi-Dirac
.

The grand canonical potential, from which we can find all the usual thermodynamic quantities, is given
by

J = −kT lnZ =


kT
∑
i

ln
(
1− e−β(εi−µ)

)
, Bose-Einstein

−kT
∑
i

ln
(
1 + e−β(εi−µ)

)
, Fermi-Dirac

.
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We can write this in a slightly nicer form as

J± = ±kT
∑
i

ln
(

1∓ e−β(εi−µ)
)
,

where (+) corresponds to Bosons and Bose-Einstein statistics and (−) corresponds to Fermions and
Fermi-Dirac statistics. We can, to ease computations, introduce the so-called “fugacity” (also called
“activity”), z = eβµ, so the grand canonical potential becomes

J = ±kT
∑
i

ln
(
1∓ ze−βεi

)
.

The average value of the occupation numbers can also be found to be the Bose-Einstein and Fermi-Dirac
distributions;

〈ni〉 = z
∂

∂z
ln ξi =

1

eβ(εi−µ) ∓ 1
.

2.2 Bosonic Systems

We now want to consider specifically the case of free Bosonic systems, where

lnZ = −
∑
i

ln
(
1− ze−βεi

)
.

We can express this sum as an integral by once again employing a density of states,

W(ε) = δ(ε) +

∞∑
i 6=0

δ(ε− εi) =⇒ lnZ = −
∫ ∞
0

dεW(ε) ln
(
1− ze−βε

)
.

Notice that we have separated the ground state contribution to the density of states. This is because,
if one looks at the average occupation number for the ground state (ε0 = 0), as µ→ 0, the expression
blows up. It must therefore be treated separately.

Taking the system to be in a box of side L, 5 the energy levels are
~2k2

2m
=

~2n2π2

2mL2
= εn, n ∈ Z.

Thus, we have

W(ε) = δ(ε) + gs

∫ ∞
−∞

d3~nδ(ε− ~2n2π2

2mL2
),

where we have included a factor gs = (2s+ 1), the spin degeneracy6. Substituting for x =
~2n2π2

2mL
and

moving to spherical coordinates where we get a factor of 4π, we get

W(ε) = δ(ε) + gs4π
mL2

~2π2

√
2mL

~π

∫ ∞
0

dxx1/2δ(ε− x).

Expressing in terms of the volume V = L3, we get our final expression

W(ε) = δ(ε) + gs
2πV (2m)3/2

π3~3
ε1/2.

Substituting this expression into the grand canonical partition function,

lnZ = −
∫ ∞
0

dεδ(ε) ln
(
1− ze−βε

)
− gs

2πV (2m)3/2

π3~3

∫ ∞
0

dεε1/2 ln
(
1− ze−βε

)
.

5This is a relatively acceptable approximation, as we will take the volume V = L3 →∞ in the thermodynamic limit.
6Not to be confused with the electron spin g-factor.
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Computing this latter integral is somewhat non-trivial, but can be done by expressing the logarithm
as an infinite sum. Namely,∫ ∞

0

dεε1/2 ln
(
1− ze−βε

)
=

∞∑
l=1

∫ ∞
0

dεε1/2
(−1)(ze−βε)l

l
=

∞∑
l=1

(−1)zl

l

∫ ∞
0

dεε1/2e−βεl.

Substituting x = βεl and recognising the definition of the Gamma function, we have

∞∑
l=1

(−1)zl

l5/2
β−3/2

∫ ∞
0

dxx1/2ex = −β−3/2Γ( 3
2 )

∞∑
l=1

zl

l5/2
.

Defining the polylogarithm function7 as

Lis(z) :=

∞∑
l=1

zl

ls
,

we have our total expression

lnZ = − ln(1− z) + gsV

(
2πm

h2β

)3/2

Li 5
2
(z).

Using the identity z
d

dz
Lis(z) = Lis−1(z), we can find

〈N〉 = z
∂lnZ
∂z

=
z

1− z
+ gsV

(
2πm

h2β

)3/2

Li 3
2
(z),

〈E〉 = µ 〈N〉 − ∂

∂β
lnZ =

3

2β
gsV

(
2πm

h2β

)3/2

Li 5
2
(z).

The average occupation number of the ground state (i.e. the average number of particles in the lowest
energy state) is

〈n0〉 =
z

1− z
,

and the remainder is that of the excited states

〈nexc〉 = gsV

(
2πm

h2β

)3/2

Li 3
2
(z).

We can see from the second equation that 〈nexc〉 ∝ T 3/2, so as T → 0, the number of occupied states
above the ground state is bounded. We can also rewrite the first equation to get

z = eβµ =
〈n0〉

1 + 〈n0〉
=⇒ µ(T ) = −kT ln

(
1 +

1

〈n0〉

)
.

So, we see that µ is negative, until we take T → 0 and 〈N〉 = 〈n0〉+ 〈nexc〉 → ∞ (the thermodynamic
limit), where µ → 0. This implies that z ≤ 1, where z → 1 as T → 0 in the thermodynamic limit.

7Also known as Jonquière’s function. Some useful identities of polylogarithms are:

Lis−1(z) = z
d

dz
Lis(z), Lis+1(z) =

∫ z

0
dx

Lis(x)

x
, Lis(z) =

1

Γ(s)

∫ ∞
0

dt
ts−1

et/z − 1
,

Lis(−z) + Lis(z) = 21−s [Lis(z)]2 , Lis(1) = ζ(s), Li1(z) = − ln(1− z).
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Thus, we know that the polylogarithm in 〈nexc〉 is bounded by Li 3
2
(1) = ζ( 3

2 ) ' 2.612, giving us a
bound on the average number of excited states

〈nexc〉 ≤ nmax
exc = gsV

(
2πm

h2β

)3/2

Li 3
2
(1).

Rearranging this equation defines for us a critical temperature Tc such that below this temperature,
the occupancy of the ground state actually begins to increase because all of the excited states are full.
Obviously we also require N > nmax

exc .

Tc :=
h2

2πmk

(
N

gsV

1

Li 3
2
(1)

)2/3

.

Thus, for a given N , there is a critical temperature Tc such that iff T < Tc, the phenomenon of Bose-
Einstein consendation will occur and the occupancy of the ground state will increase. For T << Tc, a
significant number of Bosons will occupy the ground state, ε = 0.

2.3 Fermionic Systems

Cast your mind, now, far back to before we split off into the Bosonic case. We also had the case for
Fermions, governed by

lnZ =
∑
i

ln
(
1 + ze−βεi

)
.

In a very similar way to the Bosonic case, we can express this sum as an integral over a density of
states to get

lnZ = ln(1 + z) + gs
2πV (2m)3/2

π3~3

∫ ∞
0

dεε1/2 ln
(
1 + ze−βε

)
.

Integrating this expression by parts, with x = βε, we have

lnZ = ln(1 + z) + gsV

(
2πm

h2β

)3/2 ∫ ∞
0

dx
x3/2

ex/z + 1
.

Recalling the integral definition of the Logarithm (see footnote 7, pg. 9), we have

lnZ = ln(1 + z)− gsV
(

2πm

h2β

)3/2

Li 5
2
(−z).

We can also compute the quantities in the same way as for Bosonic systems

〈N〉 =
z

z + 1
− gsV

(
2πm

h2β

)3/2

Li 3
2
(−z),

〈E〉 =
3

2β
gsV

(
2πm

h2β

)3/2

Li 5
2
(−z) =

3

2
k 〈N〉T

Li 5
2
(−z)

Li 3
2
(−z)

.

Notice that for z >> 1,
z

z + 1
< 1 is always true. Thus, in the thermodynamic limit we can neglect

the ground state contribution to lnZ. We can also see that for z << 1, the polylogarithms in the
energy are approximately equal and we recover the classical result

〈E〉 =
3

2
kNT.

If we consider T → 0 and z >> 1, we can approximate the behaviour of the polylogarithm for large z
to leading order as

Li 5
2
(−z) ' (ln z)3/2

Γ( 5
2 )

.
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Thus, taking our expression for 〈N〉 and remembering that we can neglect the ground state contribu-
tion, we have for low T

N = gsV

(
2πm

h2β

)3/2
(ln z)3/2

Γ( 5
2 )

.

However, z = eβµ, so ln z = βµ. Thus, we have

µ(T → 0) =
h2

2πm

(
Γ( 5

2 )N

gsV

)2/3

:= µ0,

which we note is independent of the temperature. Let’s use this fact in the expression for the occupancy
of single states, namely

〈n〉 =
1

1 + eβ(ε−µ)
.

As T → 0, if ε − µ0 > 0, then the denominator will get large and 〈n〉 → 0. If ε − µ0 < 0, then the
exponential term will vanish and 〈n〉 = 1. Thus, the chemical potential at T = 0 defines a “cutoff
point” where all states below a certain threshold are filled, and all those above are empty! We call this
energy cutoff the Fermi energy, εF := µ0. We can write N in terms of the Fermi energy by considering
the integral counting up all the states

N =

∫ ∞
0

dεW(1, ε) 〈nε〉 ,

however for ε > εF , 〈nε〉 = 0 and for ε ≤ εF , 〈nε〉 = 1. Thus, we have

N =

∫ εF

0

dεW(1, ε) = gsV
4π

3

(
2m

h2

)3/2

ε
3/2
F .

Similarly, for the energy as T → 0

〈E〉 =

∫ εF

0

dεW(1, ε)ε =
3

5
NεF .

Notice how even at T = 0 the energy is non-zero. This is because, unline Bose-Einstein condensates,
the particles cannot all occupy the same state due to Pauli’s exclusion principle. Instead, they pile up
on top of each other and still exist as a Fermi gas.

3 Statistics of Paramagnetism

3.1 Classical Treatment

We now want to consider magnetic systems. Specifically, a system of N magnetic dipoles (think tiny

bar magnets) with total magnetic moment ~̃µ in an applied external magnetic field ~H. The application
of the magnetic field induces a torque on the dipoles which tends to align them in a particular direc-
tion, however these particles also have thermal fluctuations which means they’re not always perfectly
aligned, especially at high temperatures.

As T → 0, these thermal fluctuations vanish and its possible to obtain a state where all the dipoles
are oriented the same way. As T → ∞ however, the thermal excitations of the particles dominates
and there is total disorder in the directions of the magnetic moments. At intermediate temperatures,

the system is governed by the quantity
µ̃H

kT
, which you will notice is similar to the expression gov-

erning Bosonic and Fermionic systems,
~ω
kT

. We will also see many correspondences between different

quantities in the canonical ensemble.
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The Hamiltonian for the system, i.e. the total energy, is

E =

N∑
i=1

Ei = −
N∑
i=1

~̃µ · ~H = −µ̃H
N∑
i=1

cos θi,

where θi is the angle between the ith particle’s magnetic moment ~̃µi and the magnetic field ~H (the
usual dot product definition). Note that we have assumed the magnitudes of the magnetic moments to
be equal, and that the particles are completely localised (no kinetic energy from momentum). Because
the particles are decoupled, the canonical partition function can be expressed in terms of the partiton
functions of individual particles, so

Z(T, V,N) =

N∏
i=1

ζi =

N∏
i=1

∑
(θi,φ)

eβµ̃H cos θi

where (θi, φ) parametrise the angular directions of the magnetic moment in 3D space. This problem
was solved by Langevin8 in 1905 by replacing (read: approximating) the sum as an integral over the
solid angles (θi, φ), since the dipoles are assumed to be freely orientable and spherically symmetric.
Thus,

ζi =

∫ 2π

0

dφ

∫ π

0

dθie
βµ̃H cos θi sin θi =

4π

βµ̃H
sinh(βµ̃H).

We can define the total average magnetisation 〈M〉 as the average value of the magnetic moments
〈µ̃ cos θ〉 to get

〈M〉 := 〈µ̃ cos θ〉 =

∑
µ̃ cos θeβµ̃H cos θ∑

eβµ̃H cos θ
=

1

ζ

∂

∂H

ζ

β
=

∂

∂H

[
kT ln ζ

]
.

However, recall that the canonical partition function of the total system is simply the product of the
N single particle partition functions. Thus,

kT ln ζ = kT lnZ1/N =
1

N
kT lnZ = − 1

N
F ,

where F = −kT lnZ is the Helmholtz free energy. Thus, we have the total average magnetisation

〈M〉 = − 1

N

(
∂F
∂H

)
T

.

Using our solution for the single particle canonical partition function, ξ, we can find an explicit ex-
pression for the magnetisation,

〈M〉 = kT
∂

∂H

[
ln (4π sinh(βµ̃H))− ln (βµ̃H)

]
= − !

βH
+ µ̃ coth(βµ̃H) := µ̃L(βµ̃H)

where L(x) = coth(x) − 1
x is the Langevin function. The quantity x := βµ̃H =

µ̃H

kT
denotes the

relative strength of the magnetic potential energy to the thermal energy. Note that when x >> 1,
L(x) ' 1 and M ' µ̃. The system acquires a state of magnetic saturation. Alternatively, when

x << 1, L(x) ' x
3 −

x3

45 + ... and M ' µ̃2H
3kT .

8Paul Langevin (1872-1946) is a very interesting character and has made numerous contributions to Physics and
Mathematics. He studied under J. J. Thomson in the famous Cavendish Laboratory and later was a PhD student of
Pierre Curie. He was a strong supporter of Einstein’s work on relativity and came up with the concept of the Twin
Paradox. He was a thesis advisor to both Léon Brillouin and Louis de Broglie.
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This also leads to the the isothermal “magnetic suceptibility”, another useful quantity9:

χT :=

(
∂〈M〉
∂H

)
T

= − 1

N

(
∂2F
∂H2

)
T

,

which is a measure of how much a material will become magnetised when an external field is applied.
For x >> 1 (large T or small H), we have

χT '
µ̃2

3kT
:=

C

T

where C =
µ̃2

3k
is the Curie constant. This result is known as the Curie Law of Paramagnetism, which

is a classical result. We can see from the derivation of this law that a large temperature or weak
magnetic field is required. A more accurate treatment is one employing Quantum Mechanics so that
we can attempt to describe the low-temperature limit.

3.2 Quantum Mechanical Treatment

The primary difference between the classical and quantum approaches is the quantisation of the mag-
netic moments. Namely, we now have

~̃µ =
ge

2mc
~L

where ~L is the angular momentum (angular or spin intrinsic, or both) of the particle (we are now
explicitly taking the particles to be electrons) and g is the gyromagnetic ratio or Landé g-factor. The
values the angular momentum can take are the discrete eigenvalues l =

√
j(j + 1)~. If the electron’s

angular momentum is purely due to intrinsic spin, g = 2.0023... ' 2 and if it is purely due to orbital
motion, g = 1. The explicit expression is

g =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)

The equation for the magnetic moment is generally written instead as

µ̃2 = g2µ2
Bj(j + 1)

where µB =
e~

2mc
is the Bohr magneton, a convenient unit for these interactions. If we consider

completely localised electrons (free electrons e.g. in conductors must be treated differently) with the
magnetic field in the z direction, then we have

M = −~̃µ · ~H = −µ̃zHz = −gµBmH

where the integer values m = −j,−j + 1, ..., j − 1, j are the eigenvalues of Lz, the z component of
the angular momentum. The number of allowed orientations of the magnetic moment is 2j + 1. The
canonical partiton function for a single particle is thus

ζ(T, V ) =

j∑
m=−j

eβgmHµB =

j∑
m=−j

emx/j

9This measure of a material’s response to a magnetic field actually has numerous uses. It is used is the geosciences
to measure thermoremanant magnetisation (TRM) in rocks, which is how we can map the evolution of the Earth’s
magnetic field, including the numerous times the planet’s magnetic field has flipped. It can also tell us about the history
of magnetic fields of other planets, like Mars. One of the most important uses however is in Susceptibility Weighted
Imaging (SWI), which is used in MRI sequencing to compare and contrast different structures by exploiting differences
in the magnetic suceptibility of various tissues. It can identify strokes, calcium deposits, brain haemorrharing, and is
even accurate enough to classify tumours by measuring the growth rates of cancerous cells.
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where we have let x = βgµBjH. So,

ζ(T, V ) = e−x

(
e

2j+1
j x − 1

ex/j − 1

)
=

sinh
(

2j+1
2j x

)
sinh

(
x
2j

) .

We now have the average magnetism, as before,

〈M〉 =
1

β

∂

∂H
ln ζ = gµBj

[
(1 + 1

2j ) coth
(
x(1 + 1

2j )
)
− 1

2j
coth

(
x
2j

)]
.

The term in the square brackets is known as the Brillouin function of order j, Bj(x). When the
magnetic field is strong, i.e. H >> 1, and/or the temperature is low, T << 1, we have x >> 1 and
Bj(x) ≈ 1 for all j. This is magnetic saturation. On the other hand, for T >> 1 or H << 1, we have
x << 1 and

Bj(x) ' 1

3
(1 +

1

j
)x+ ...

which yields

〈M〉 ' g2µ2
B

2kT
j(j + 1)H

and thus we have

χT =
∂〈M〉
∂H

' g2µ2
Bj(j + 1)

3kT
.

We can see that even in the high temperature limit, we require the discrete levels of Quatntum Physics!
If we take j → ∞ while simultaneously g → 0 and insisting that µ̃ remains constant, we recover the
classical limit where we have a continuum of states and µ̃ can have continuous values. Indeed, we find
that in this limit

Bj(x) '
j→∞

gµBj︸ ︷︷ ︸
µ̃

[
coth(x)− 1

x

]︸ ︷︷ ︸
L(x)

.

Note that the Curie constant is now a different value, but this improved approximation agrees very
well with experimental results.

3.3 Spin-1
2
Particles

We now want to consider the specific case of electrons, particles with spin 1
2 , and no orbital angular

momentum. In this case, we have g ' 2 and j = 1
2 , giving us 2j + 1 = 2 possible orientations of the

magnetic moment. The possible energies for each dipole are, noting that gj ' 1,

εi =

{
−µBH = −ε0
+µBH = +ε0

.

Substituting this into our previous results, we find

Z(T, V,N) = ζN =

(
sinh(2x)

sinh(x)

)N
= (2 cosh(x))N = (2 cosh(βε0))N ,

since x = βµBH = βε0. The thermodynamic properties can be computed as normal:

F = −kT lnZ = −NkT ln(2 cosh(βε0)),

S = −
(
∂F
∂T

)
H

= Nk [ln (2 cosh(βε0))− βε0 tanh(βε0)] ,

〈E〉 = F + TS = −Nε0 tanh(βε0),
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〈M〉 = − 1

N

(
∂F
∂H

)
T

= µB tanh(βε0),

CV =

(
∂〈E〉
∂T

)
H

=
Nkβ2ε20

cosh2(βε0)
.

Note from this that 〈E〉 = −N 〈M〉H, as we expect. Considering the entropy S as T →∞, we have

S ' Nk
[
ln(2)− ε20

(kT )2

]
' Nk ln(2).

In the other limit, T → 0, we find

S ' Nk
[
ln
(
eβε0

)
− βε0

]
' 0.

Let’s look at these results more carefully. Remember that in the thermodynamic limit, the entropy
can be calculated equivalently in the microcanonical ensemble, where

S = k ln Ω =

{
Nk ln(2) = k ln

(
2N
)
, T →∞

0 = k ln(1), T → 0
.

So, it looks as if the number of microstates of the system is

Ω(E, V,N) =

{
2N , T →∞ (kT >> ε0)

1, T → 0 (kT << ε0)
.

We see that at high temperatures, the orientation of the dipoles is random (complete disorder), so all
microstates are equally likely and are equal in number to 2N , two possibilities for each particle.

At very low temperatures, there is only one microstate and 〈E〉 → −Nε0, corresponding to all of
the dipoles being in their lowest state and aligned in the direction of the magnetic field (complete
order). We can also see that the heat capacity CV takes its maximum value for ε0 ' kT . This is
known as the Schottky anomaly10, since heat capacities usually increase with temperature.

We can see a very peculiar result here, by rearranging the energy expression for temperature. We
find

1

T
=

k

ε0
ln

[
1− 〈E〉Nε0

1 + 〈E〉
Nε0

]
.

We see that when 〈E〉 > 0, the temperature of the system is negative! This is actually an observable
phenomenon in systems that have an upper limit on the amount of energy the system can hold. In a
physical sense, negative temperatures refer to the fact that heat will always flow to an area of positive
temperature. In that sense, negative temperatures are “hot”.

10Named after Walter H. Schottky, yet another underrated physicist. The majority of his research focused on semi-
conductor devices and his contributions to the field of semiconductor physics are vast and significant. He invented the
Schottky diode, which is formed from the junction of a semiconductor and a metal, with the metal acting as the p-type
conductor. The junction voltage of these diodes is lower than that of Silicon and Germanium, making them preferable
in efficiency-sensitive applications. The charge states in Schottky diodes are highly susceptible to applied electric fields,
making them useful in loading and unloading single electrons into quantum wells and quantum dots.
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4 One-Dimensional Spin Chains

4.1 The Ising Model

Continuing on from the previous topic, we consider magnetic dipoles with two possible values, ±1,
where neighbouring dipoles can interact weakly with their neighbours to influence the direction of their
spin. If we consider the dipoles in a one-dimensional lattice, or chain, this is known as the 1D Ising
Model. Writing the spin of each particle as σi = ±1, the Hamiltonian of the system is

H = −
N∑
i,j

Jijσiσj − µ
N∑
i=1

Hiσi.

Jij represents the strength of the interaction between the ith and jth dipoles. If Jij > 0, the system is
ferromagnetic, if Jij < 0, it is anti-ferromagnetic, and if Jij =, the system is non-interacting (which is
our previous discussion). We first want to discuss “nearest-neighbour” interactions, where Jij = J > 0
for j = i+ 1 and 0 otherwise. Thus, we have

H = −J
N−1∑
i=1

σiσi+1 − µ
N∑
i=1

Hiσi.

We want to first consider the case of no magnetic field (Hi = 0) and free boundary conditions. We
have the canonical partition function

Z =
∑
{σi}

e
βJ

N−1∑
i=1

σiσi+1

=
∑
σ1

· · ·
∑
σN

e
βJ

N−1∑
i=1

σiσi+1

.

Letting ηi = σiσi+1 such that ηi = +1 for σi = σi+1 and ηi = −1 for σi 6= σi+1, we have

Z =
∑
σ1

∑
η1

· · ·
∑
ηN−1

eβJ(η1+···ηN−1) =
∑
σi=±1

(∑
η=±1

eβJη

)N−1
= 2N

[
cosh(βJ)

]N−1
.

We could consider another case, where the one-dimensional chain is in a loop, whereby we have
σN+1 = σ1, and we still have Hi = 0. In this case,

H = −J
N−1∑
i=1

σiσi+1 − JσNσ1.

We have the same expression as before with the exception of an added term

Z =
∑
σ1

· · ·
∑
σN

e
βJ

N−1∑
i=1

σiσi+1

eβJσNσ1 .

If we want to perform the same substitution for η, we need to write σNσ1 in terms of that notation.
Notice however that since σ2

i = 1,

σNσ1 = (σ1σ2)(σ2σ3)(σ3σ4) · · · (σN−2σN−1)(σN−1σN ).

Thus, we have σNσ1 = η1 · · · ηN−1 and we get

Z =
∑
σ1

∑
η1

· · ·
∑
ηN−1

eβJ(η1+...+ηN−1)+βJη1···ηN−1 =
∑
σ1

∞∑
α=0

(βJ)α

α!

(∑
η=±1

ηαeβJη

)N−1
.
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Breaking this up into odd and even terms in α, we get the final result

Z =
[
2 cosh(βJ)

]N
+
[
2 sinh(βJ)

]N
.

We can also consider the case where there is a magnetic field (Hi = H 6= 0) with periodic boundary
conditions. We have to treat this somewhat differently. We have

Z =
∑
σ1

· · ·
∑
σN

e
1
2βH(σ1+σ2)+βJσ1σ2 · · · e 1

2βH(σN+σ1)+βJσNσ1 .

We consider each factor as an element of a “transfer matrix”, e.g.

Tσ1σ2
:= e

1
2βH(σ1+σ2)+βJσ1σ2 =

[
eβH+βJ e−βJ

e−βJ e−βH+βJ

]
.

Thus, we have

Z =
∑
σ1

· · ·
∑
σN

Tσ1σ2
· · · TσNσ1

=
∑
σ1

(T N )σ1σ1

So, we can write the partition function as the trace of the transfer matrix

Z = Tr(T N ).

We can compute T N by diagonalising the matrix. It is real and symmetric, so Tdiag = OTT O for a
real orthonormal matrix O. Thus, Tr(T N ) = λN1 + λN2 for eigenvalues λ1,2 of T .

For λ1 6= λ2 and λ1 > λ2, we have

Z = λN1

(
1 +

(
λ2
λ1

)N)N
However, since λ2

λ1
< 1, as N →∞, we will have

Z = λN1 +O(e−N ln(λ2/λ1)).

So, in the thermodynamic limit, only the largest eigenvalue contributes. A concrete value for Z can
be found by computing the eigenvalues of T , which are

λ1,2 =
1

2

[
2eβJ cosh(βH)±

√
4e2βJ cosh2(βH)− 8 sinh(2βJ)

]
.

As the positive solution is the larger, we have in the thermodynamic limit

F = −NkT lnλ1 = −NJ −NkT ln

[
cosh(βH) +

√
sinh2(βH) + e−4βJ

]
.

Looking at the case where T → 0 (or J →∞), we have

λ1 ' eβJ(cosh(βH) +

√
sinh2(βH)(1 +O(e−4βJ)) = ebetaJ(cosh(βH) + | sinh(βH)|).

Thus, we see that λ1 ' eβJ + |βH| and so

F ' −NkT (βJ + |βH|) = −NJ −N |H|.

The derivative of F is discontinuous! We have

〈M〉 = − 1

N

∂F
∂H

=

{
1, H > 0

−1, H < 0
.

As T → 0 or J → ∞, there is very strong interaction between spins and all are aligned in the same
direction.
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4.2 Spatial Correlations

We can characterise the statistical causal relationship between two particles in the chain by a 2 point
correlation function

G(i, j) = 〈σiσj〉 − 〈σi〉 〈σj〉 = 〈σiσj〉 ,
since σi = ±1, so 〈σi〉 = 0. It can also be expressed as

G(i, j) = 〈(σi − 〈σi〉)(σj − 〈σj〉〉 .

This function measures the correlation in the fluctuations of the different spins at different sites in the
lattice/chain. G(i, j) is related to the probability

P (σi = σj) =
1

Z

∑
i,j

δσi,σj
e−βH(σi,σj) =

〈
δσi,σj

〉
=

1

2
+

1

2
G(i, j).

We now note that

G(i, i+ 1) =
1

Z

∑
σ1

· · ·
∑
σN

σiσi+1e
βJσ1σ2+...+βJσN−1σN

Re-generalising J = Jij , we can write this as

G(i, i+ 1) =
1

Z(Ji)

∂

∂(βJi)

 ∑
{σ1,...,σN}

eβJ1σ1σ2+...βJN−1σN−1σN


︸ ︷︷ ︸

Z(Ji)

=
∂

∂(βJi)
[lnZ(Ji)] .

Given our expression Z(Ji) = 2N
∏N−1
i=1 cosh(βJi), we have

G(i, i+ 1) = 〈σiσi+1〉 = tanh(βJi) =
Ji=J

tanh(βJ).

We can show by induction that
G(i, i+ j) = tanhj(βJi).

If we consider T → 0, βJ → ∞, then tanh(βJ) → 1. Thus, we have G(i, i + j) = 1 for all j. This
implies that the system at T = 0 is entirely in the same state. Each two particles has a “correlation”

of 1, i.e. they have the same value. We showed that the probability P (σi = σj) =
1

2
+

1

2
G(i, i+ j), so

if G(i, ij) = 1, then P (σi = σj) = 1, so indeed the particles are all in the same state.

We can also see that as T gets bigger, the correlations decrease exponentially until for T >> 1,
βJ << 1, there is no correlation. We can define a correlation length,

l =
1

ln(coth(βJ))
,

measured in units of atomic/lattice spacing, gives the length over which spins are correlated with a
probability of 1.

In the case of H 6= 0, we can show that we can write the transfer matrix as

〈σi〉 =
1

Z

∑
σ1

· · ·
∑
σN

e−βHσi =
1

Z

∑
σ1

· · ·
∑
σi

· · ·
∑
σN

Tσ1σ2
· · · Tσi−1σi

σiTσiσi+1
· · · TσN−1σN

,

but since
∑
σi

Tσi−1σiσiTσiσi+1 = T σzT , where σz =

(
1 0
0 −1

)
is the third Pauli matrix, we have, for

Tdiag = OTT O,

〈σi〉 =
1

Z
Tr(σzT

N ) =
Tr(OTσzOT Ndiag)

Tr(T Ndiag)
.
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