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Thermodynamics
First Law of Thermodynamics
The heat flux to a system in any process is the difference in internal energy between the states minus
the work done to the environment in the process.

đQ = dE + đW

e.g. A system in chemical isolation (dN = 0) has đW = PdV (mechanical work), so đQ = dE +PdV .
More generally, for a quasistatic/reversible process, the work incremenet đW = đWM + đWCH , con-
sisting of đWM = PdV (mechanical work) and đWCH = µdN (chemical work).

In a reversible process, the incremental heat transfer đQ is the product of the temperature T and
the incremental change in entropy dS. i.e.

đQ = TdS =⇒ dE = TdS − PdV +
∑
i

µidNi.

This can be rearranged to
dS = 1

T
dE + P

T
dV −

∑
i

µi
T
dNi.

The coefficients on each term give the intensive variables T, P, µi in terms of partial derivatives of the

extensive variables S,E, V,Ni. e.g. T =
(
∂E

∂S

)
V,Ni

, P = T

(
∂S

∂V

)
E,Ni

.

Second Law of Thermodynamics
The change in entropy ∆S of a system is non-negative, and ∆S = 0 for reversible processes. The
entropy S of a system takes its maximum value at equilibrium.

Third Law of Thermodynamics
The entropy S of a system vanishes when(

∂E

∂S

)
V,Ni

= T = 0.
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Thermodynamic Potentials
The thermodynamic potentials are given by the Legendre transforms of the internal energy E(S, V,Ni).

F = E −
(
∂E

∂S

)
V,Ni

S = E − TS (Free Energy / Helmholtz Free Energy)

G = F −
(
∂F
∂V

)
S,Ni

V = F + PV (Gibbs Free Energy)

H = E −
(
∂E

∂V

)
S,Ni

V = E + PV (Enthalpy)

J = F −
(
∂E

∂Ni

)
S,V

Ni = F − µiNi (Grand Canonical Potential)

Maxwell Relations and the Thermodynamic Square
The Maxwell relations are equivalences between derivatives of different thermodynamic quantities.
They, as well as the thermodynamic potentials, can be remembered using the Thermodynamic Square.

The clockwise layout of the square can be remembered using the mnemonic “Every Very Fine Teacher
Gives Physics Homework Solutions” and the locations of the negative signs correspond to the words
“Statistical Physics”.

The Maxwell relations can be reclaimed from this square by drawing a t-shape (or any 90o rota-
tion, eg. A) and creating partial derivatives from the components. For example, t gives the relation(

∂S

∂P

)
T

= −
(
∂V

∂T

)
P

where the derivative takes the sign of the quantity being held constant in the square (in this case, P
is negative in the square, so there is a − sign). In the case of @, we have

−
(
∂V

∂S

)
P

= −
(
∂T

∂P

)
S

=⇒
(
∂V

∂S

)
P

=
(
∂T

∂P

)
S

.

We can also write the differential forms of the thermodynamic potentials. For example, if we want the
Gibbs Free Energy G, then we take the two opposite corners −S and V . These are the coefficients of
the differentials in G. The differentials themselves are in the opposite corner to the coefficient, so the
coefficient −S is multiplied by dT and the coefficient V is multiplied by dP (ignoring sign) to give

dG = V dP − SdT + µdN

(we always add on µdN). Notice also, that the quantities to either side of each potential are its natural
dependent variables, not including N . e.g. E = E(S, V,N).
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Ideal Gas
The ideal gas equations are

PV = NkT, E = 3
2NkT.

The heat capacity at constant volume for an ideal gas is

CV :=
(
∂E

∂T

)
V

= T

(
∂S

∂T

)
V

= 3
2kN

and at constant pressure

CP :=
(
∂E

∂T

)
P

+ P

(
∂V

∂T

)
P

= CV +Nk = 5
2Nk.

Clausius-Clapeyron Equation
For a first order phase transition of liquid to gas (or similar),

∂P

∂T

∣∣∣∣
near boundary

= ∆s
∆v = L

T (vgas − vliquid)

where vgas/liquid =
Vgas/liquid

Ngas/liquid
, and similarly for sgas/liquid. ∆s = sgas − sliquid and similarly for ∆v,

and L = T∆s is the Latent Heat.

Background Knowledge
Gaussian Integrals ∫ ∞

−∞
e−ax

2
dx =

√
π

a
, a > 0

I2n =
∫ ∞
−∞

x2ne−ax
2
dx = (−1)n d

n

dan

∫ ∞
−∞

e−ax
2
dx = (−1)n d

n

dan

√
π

a∫ ∞
−∞

e−(ax2+bx)dx = eb
2/4a

√
π

a

Gamma Function
Γ(n) = (n− 1)!, n ∈ N

Γ(z) =
∫ ∞

0
tz−1e−tdt, z ∈ C\Z≤0

Γ(z + 1) = zΓ(z)

Γ
(

1
2

)
=
√
π

Stirling Approximation
ln(Γ(n+ 1)) = ln(n!) ' n(ln(n)− 1), n >> 1

3



Volume of Hyperballs
The volume of an n-dimensional hyperball of radius R has volume

Vn(R) = πn/2

Γ(n2 + 1)R
n

Probability
The expectation value/average/mean of a discrete random variable X is

〈X〉 =
n∑
i=1

PiXi

and for a continuous random variable X, is

〈X〉 =
∫ b

a

XP (X)dX.

The variance of a random variable X is

σ2 =
〈
(X − 〈X〉)2〉 =

〈
X2〉− 〈X〉2 .

The Binomial Distribution for n trials with m successes with probability of success p is

P (n,m, p) =
(
n

m

)
pm(1− p)n−m.

The number of ways to place m distinct objects in m boxes is m!.

The number of ways to place m distinct objects in n > m boxes is n!
(n−m)! .

The number of ways to place m identical objects in n > m boxes is
(
n
m

)
= n!
m!(n−m)! .

For k outcomes with probabilities p1, p2, ..., pk, the Multinomial Distribution is

P = n!
m1!m2!...mk!p

m1
1 pm2

2 ...pmk

k

The Poisson Distribution for a discrete random variable X is

P (X) = 〈X〉
X

X! e−〈X〉.

For the Poisson Distribution, the variance σ2 = 〈X〉.

The Gaussian Distribution for a continuous random variable X with mean value µ and variance σ2 is

P (X) = 1√
2πσ2

e−(X−µ)2/2σ2
.
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Statistical Ensembles
Microcanonical Ensemble
For an isolated system with f degrees of freedom,

Ω(E, V,N) =
∫
H≤E

dqdp

hf

which yields
W(E, V,N) = ∂Ω

∂E
, S = k ln Ω.

Note that the f -dimensional hyperball volume is

Vf (R) =
∫

f∑
i=1

p2
i
≤R2

dp1dp2...dpf

and for an ideal gas of N free particles in 3D space (f = 3N d.o.f)

H =
3N∑
i=1

p2
i

2m

So,

Ω(E, V,N) = 1
h3N

∫
3N∑
i=1

p2
i
≤2mE

3N∏
i=1

dqidpi = V N

h3N
π3N/2(2mE)3N/2

Γ( 3N
2 + 1)

If the particles are identical, we also divide by N !.

The probability of finding n < N particles in a volume v < V in an isolated system is

P (E, v, n) = W(E, v, n)W(E, V − v,N − n)
W(E, V,N) .

The probability distribution of finding a particle with particular energy ε is

P (ε)dε = W(ε, V, 1)W(E − ε, V,N − 1)
W(E, V,N) dε.

Canonical Ensemble
Suitable for systems at equilibrium with a heat reservoir (constant temperature T ).

The Canonical Partition Function Z is given by

Z(T, V,N) =
∫

all energies
W(E)e−βEdE =

∫
all phase space

dqdp

hf
e−βH(q,p)

where β = 1
kT

.

〈E〉 = − ∂

∂β
[lnZ] , σ2 = ∂2

∂β2 [lnZ]

The Free Energy can be recovered from

F(T, V,N) = −kT lnZ
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Grand Canonical Ensemble
Suitable for systems at equilibrium with a heat bath and particle reservoir (constant temperature T
and constant chemical potential µ).

The Grand Canonical Partition Function Z is given by

Z(T, V, µ) =
∑
Ni

eβµNiZ(T, V,Ni)

〈N〉 = h
∂

∂h
[lnZ]

where h = eβµ is the fugacity.

The Grand Canonical Potential is recovered from Z by

J (T, V, µ) = −kT lnZ
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