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Operators

Non-Commuting Operators

For two operators Â and B̂ to commute, i.e. [Â, B̂] = ÂB̂ − B̂Â = 0, the two operators must share a
common set of eigenvectors and associated eigenvalues.

Remember the canonical commutation relation

[x̂, p̂] = i~.

Heisenberg Uncertainty Relations

The uncertainty (variance) in an observable is defined as

(∆A)2 = 〈(Â− 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2 = 〈ψA|ψA〉 .

So, (∆A)2(∆B)2 = 〈ψA|ψA〉 〈ψB |ψB〉 ≥ |〈ψA|ψB〉|2 by Cauchy-Schwarz. We can rewrite this as

|〈ψA|ψB〉|2 =
1

2i
(〈ψ| [Â, B̂] |ψ〉)2 so we have

∆A∆B ≥ 1

2
|〈C〉| = 1

2i
[Â, B̂].

e.g. ∆x∆p ≥ ~
2

and ∆E∆t ≥ ~
2

.

d

dt
〈Q〉 =

i

~
〈ψ| [Ĥ, Q̂] |ψ〉+

〈
∂Q̂

∂t

〉
so we have, combining the two results,

∆H∆Q ≥ 1

2

∣∣∣∣1i [Ĥ, Q̂]

∣∣∣∣ =
~
2

∣∣∣∣ ddt 〈Q〉
∣∣∣∣

assuming
∂〈Q〉
∂d

= 0 (true for steady-state systems).
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One-Dimensional Problems

Potential Step

The potential step is given by V (x) = Θ(x)V0, where Θ(x) =

{
1, x > 0

0, x < 0
. For 0 < E < V0 and

x < 0, we have

− ~2

2m

d2ψ(x)

dx2
= Eψ(x)

with solutions ψ(x) = Aeikx + Be−ikx, k =

√
2mE

~
. The time-dependent solutions are found using

the time evolution operator Û(t) = eiEt/~ to get

ψ(x, t) = ψ(x)eiEt/~ = Aei(kx−iωt) +Be−i(kx+iωt)

where E = ~ω. Letting v =
E

k
, we have two waves; one right-moving and one left-moving.

ψ(x, t) = Aeik(x−vt) +Be−ik(x+vt)

For x > 0, we have

−d
2ψ(x)

dx2
=

2m

~2
(V0 − E)ψ(x)

with solutions ψ(x) = Ce−kx + Dekx, k =

√
2m(V0 − E)

~
, so the probability of finding the particle

behind the potential barrier is nonzero. We set D = 0 to ensure normalisability.

The boundary conditions are:
1) ψ(x) is continuous,
2) ψ′(x) is continuous for finite V (x).

The second condition is found by integrating the Schrödinger equation across the boundary.∫ x+ε

x−ε

d2ψ

dx2
dx =

∫ x+ε

x−ε

2m

~2
(V (x)− E)ψ(x)dx

ψ′(x+ ε)− ψ′(x− ε) ≤ 4mε

~2
(V (x)− E)max

= 0 as ε→ 0.

The probability density is ρ = ψ∗(x)ψ(x), and the probability current density is Jx =
~

2mi
(ψ∗ψ′ −

(ψ′∗)ψ), related by
dρ

dt
+
dJx
dx

= 0.

For stationary states,
dρ

dt
= 0 and

dJx
dx

= 0.
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Harmonic Oscillator

The harmonic oscillator potential is V (x) =
1

2
mω2x̂2 and the TISE is

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ.

Letting ξ =

√
mω

~
x and ε =

E

~ω
, we have

d2ψ

dx2
+ (2ε− ξ2)ψ = 0.

For large ξ, we have solutions ψ = Ae−ξ
2/2+Beξ

2/2, where we let B = 0 for normalisability. The exact

solutions will be of the form ψ = ν(ξ)e−ξ
2/2. Letting ν(ξ) =

∞∑
k=0

axξ
k, we get a recursion relation

ak+2 =
2k − 2n

(k + 2)(k + 1)
ak

where n = 2ε − 1. For large k, we have ak+2 ∼
2

k
ak, so to avoid a non-normalisable term, we need

some ak = 0 for ak−2 6= 0. We then have 2k − 2n = 0, so the energies are given by E = ~ω(n+ 1/2).

The solutions to ν(ξ) are the Hermite polynomials Hn, so

ψn(x) = CnHne
−ξ2/2, ξ =

√
mω

~
x.

Three-Dimensional Problems

Radial Schrödinger Equation

We consider the separable solutions to the Schrödinger equation ψ(~r) = R(r)Y ml (θ, φ), so that the
TISE becomes [

− ~2

2m

∂

∂r

(
r2
∂

∂r

)
+

L2

2mr
+ V (r)

]
ψ = Eψ

The eigenvalues of the L2 operator acting on Y ml (θ, φ) are l(l + 1)~Y ml (θ, φ), so[
− ~2

2m

∂

∂r

(
r2
∂

∂r

)
+

~2l(l + 1)

2mr2
+ V (r)

]
R(r) = ER(r).

Letting U(r) = rR(r), we have the Radial Schrödinger Equation

− ~2

2m

d2U(r)

dr2
+

[
l(l + 1)

2mr
+ V (r)

]
U(r) = EU(r)

where we require U(r)→ 0 as r →∞.
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Coulomb Potential

The Coulomb potential is V (r) = −2e2

r
. For values of r near 0, the TISE becomes

d2U

dr2
− l(l + 1)

r2
U = 0

which has solutions U(r) = Arl+1 +Br−l, l ≥ 0. For large r, we have

d2U

dr2
= −2mE

~2
U = κ2U

where κ2 = −2mE

~2
=⇒ E ≤ 0. The solutions are U(r) = Ae−κr +Beκr, but we let B = 0 to satisfy

normalisation.

We have solutions U(ρ) = ρl+1e−ρω(ρ), ρ = κr, and assume

ω(ρ) =

∞∑
k=0

akρ
k,

which yields the condition

ak+1 =
2(k + l + 1)− ρ0

(k + 1)(k + 2l + 2)
ak

where ρ0 =
Ze2κ

|E|
=

√
2m

|E|
Ze2

~
.

For large k, ak+1 ∼
1

k
ak, so to avoid a eρ term, we require ak+1 = 0 for some ak. Thus, we need

2(k + l + 1)− ρ0 = 0 which gives us a condition for the energy

En = −Z
2me4

2~2n2
.

The solutions for ω(ρ) are
ω(ρ) = CL2l+1

n−l−1(2ρ),

which are the associated Laguerre polynomials, Lpq−p(x). The ground state wavefunction for this
Coulomb potential is

ψ100(r) =

√
Z3

πa3
e−Zr/a.
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Two-Particle Systems

When interactions between particles is weak and the particles are distinguishable, we can write the
state of a two-particle system |Ψ(1, 2)〉 as a sum of direct products of one-particle states |ψ〉 =

∑
i

ci |qi〉

|Ψ(1, 2)〉 =
∑
i,j

cij |q(1)i 〉 ⊗ |q
(2)
j 〉 .

However, if the particles are identical (as is the case for electrons), then |Ψ(1, 2)〉 = |Ψ(2, 1)〉, so we
have a symmetric Hamiltonian, such as

Ĥ(1, 2) = Ĥ(2, 1) =
p̂21
2m

+
p̂22
2m

.

Pauli Exclusion Principle

It is known that for a pair of indistinguishable particles that if they have:
- 1

2 -integer spin (fermions) they will have antisymmetric states,
- integer spin (bosons) they will have symmetric states.

If the two particles are fermions ( 1
2 -integer spin) then the wavefunction Ψ−(1, 2) must be antisymmetric:

Ψ−(1, 2) =
1√
2

[ψa1(~x1)ψa2(~x2)− ψa1(~x2)ψa2(~x1)] .

Notice that if the two particles have the same set of quantum numbers, i.e. a1 = a2, then the wave-
function is zero, so there is zero probability of finding the two particles in the same state. Fermions
cannot exist in the same state.
However, bosons (integer spin) prefer to be in the same state (same wavefunction, just with a +).

Exchange Force

The expectation value for the (one-dimensional) separation of fermions (−) and bosons (+) is〈
(x1 − x2)2

〉
± =

〈
x2
〉
a1
− 2 〈x〉a1 〈x〉a2 +

〈
x2
〉
a2
∓ 2
∣∣〈x〉a1a2∣∣2

so, fermions tend to be further apart and bosons tend to be closer together (exchange force).

The Hydrogen Molecule

The Exchange Force tells us that if the spatial part of the wavefunction is symmetric, the electrons
will tend to be closer together, which results in a region of negative charge that attracts the protons
(covalent bonding). However, we know that the total wavefunction of a two-electron system must be
antisymmetric. This discrepancy can be resolved by taking into account electron spin, since an anti-
symmetric spin wavefunction times a symmetric spatial wavefunction will result in an antisymmetric
total wavefunction:

Ψ(1, 2) = ψnlm(~x)χsz = A [ψa1(~x1)ψa2(~x2)± ψa1(~x2)ψa2(~x1)]︸ ︷︷ ︸
spatial part

[|↑〉1 |↓〉2 ± |↓〉1 |↑〉2]︸ ︷︷ ︸
spin part

.
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Helium

The Helium atom is a two-electron system with total nuclear charge Z =
2

4πε0
(= 2 in cgs units). The

Hamiltonian is

H =

(
− ~2

2me
∇2

1 −
Ze2

r1

)
+

(
− ~2

2me
∇2

2 −
Ze2

r2

)
+

1

4πε0

e2

|r1 − r2|︸ ︷︷ ︸
electron repulsion

Ignoring the electron repulsion term, this becomes H = H1 +H2, which has solutions consisting of a
combination of Hydrogen atom wavefunctions with Z = 2:

Ψ(~r1, ~r2) = ψn1l1m1
(~r1)ψn2l2m2

(~r2).

The energies are in terms of Hydrogen atom energies E = 4(En1
+En2

). The ground state wavefunction
is given by

Ψ0(~r1, ~r2) = ψ100(~r1)ψ100(~r2) =
8

πa3
e−2(r1+r2)/a

and the ground state energy is E0 = 8(−13.6 eV) = −109 eV. The actual value is closer to −79 eV
(See Homework 5, Q1 (ii)).

The ground state wavefunction is symmetric, so we must have an antisymmetric spin state. The
total ground state wavefunction, including spin, is given by

Ψ0(~r1, ~r2) =
8

πa3
e−2(r1+r2)/a (|↑〉1 |↓〉2 − |↓〉1 |↑〉2) .

The spin states can also be written as vectors |↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
.
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