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Oh leave the Wise our measures to collate
One thing at least is certain, light has weight
One thing is certain, and the rest debate—
Light rays, when near the Sun, do not go straight.

Sir Arthur S. Eddington, 1882-1944

1 Introduction

The material in this module closely follows Lecture Notes on General Relativity [1] by Sean M. Carroll.
I’ll be assuming a good knowledge of Differential Geometry and glossing over some common definitions.
There is material covered in the course that is not covered here, mostly because they are asides to the
main content, don’t fit well into the structure of these notes, or are easily looked up from your own
notes or on Wikipedia.

1.1 Inertial Frames

Consider two inertial frames S and S ′, with S ′ moving relative to S with a (dimensionless) velocity

β = v/c in the x direction; i.e. ~β = βx̂.

Figure 1: Two inertial frames related by a boost in the x direction

These frames are related by Lorentz transformations (LTs). In units where c = 1 (as will be
assumed from now on), the spatial and temporal coordinates transform like

x′ = γ(x− βt), y′ = y

t′ = γ(t− βx), z′ = z,
(1.1)

where γ = (1− β2)−1/2. Such LTs preserve the quantity∗

s2 = −t2 + x2 + y2 + z2 = −t′2 + x′2 + y′2 + z′2. (1.2)

∗This can also be equivalently defined with the opposite overall sign, but we will use the − + ++ convention.
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If we consider just the tx plane, then we have the condition that a set of inertial frames have to satisfy

s2 = −t2 + x2. (1.3)

This is the equation of a hyperbola for some fixed constant s2. Plotting the lines of constant s2 in Fig.
2, we see that a particle moving in an inertial reference frame is constrained to one of the curves.

A particle on a blue curve (s2 < 0) is time ordered with respect to the origin. That is to say,
one cannot Lorentz transform a future event so that it happens in the past or vice versa. This region
is causal, or time-like.

A particle on a red curve (s2 > 0) is spatially ordered with respect to the origin and cannot be
Lorentz transformed from “in front” of the origin to “behind” the origin, and vice versa however it
can be boosted into the past or future and is therefore not causal. This region is called space-like.

A particle on a green curve (s2 = 0) is moving along the lines x = ±t, so its velocity is exactly
that of light (here c = 1 so we have x = ±ct). This region is called light-like or null.

Figure 2: The equation t2 = x2 − s2.

Since the quantity s2 is invariant under Lorentz transformations, an unaccelerated particle is confined
to its hyperbola.

1.2 Four-Vectors and the Lorentz Group

We can group the three spatial components and one temporal component into a single four-vector
xµ, where µ = 0, 1, 2, 3. Namely,

xµ = (t, x, y, z) = (x0, x1, x2, x3). (1.4)

The invariant quantity s2 can then be written as

s2 = ηµνx
µxν (1.5)

Where ηµν = diag(−1, 1, 1, 1) is a diagonal matrix called the Minkowski metric and pairs of lower
and upper indices are summed over.

With this constraint, we can ask what is the most general Lorentz transformation we can perform?
Consider the transformation

xµ → `µνx
ν . (1.6)
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The invariant quantity s2 is then

s2 = ηαβx
αxβ = ηµν`

µ
αx

α`νβx
β . (1.7)

Thus we require ηαβ = ηµν`
µ
α`
ν
β , which in matrix notation is η = `T η`. This gives several constraints

on the transformation matrix `. Taking the determinant, we get

det η = det
(
`T η`

)
= det η(det `)2

1 = (det `)2

=⇒ det ` = ±1. (1.8)

“Proper” Lorentz transformations have det ` = +1 and “improper” (discrete) LTs have det ` = −1.
We can also constrain the 00 component of ` by considering its block form. With

η =

[
−1 0
0 1

]
, ` =

[
`00 −aT
−b L

]
, (1.9)

we have the condition

`T η` =

[
`00 −bT
−a LT

] [
−1 0
0 1

] [
`00 −aT
−b L

]
=

[
−`200 + bTb aT `00 − bTL
a`00 − bLT LTL− aTa

]
(1.10)

So we have the condition that the 00 component must satisfy

− 1 = −`200 + bTb. (1.11)

Since bTb is strictly non-negative (it’s the usual dot product), we have `200 ≥ 1, which gives two
conditions: `00 ≥ 1 or `00 ≤ −1. Since the 00 component multiplies the time coordinate, the positive
condition preserves the time direction (“orthochronous”) and the negative condition is time reversal
(“antichronous”). This gives four groups of Lorentz transformations:

Orthochronous: L↑ (`00 ≥ 1) Antichronous: L↓ (`00 ≤ −1)

Proper: L+ (det ` = +1) L↑+ L↓+

Improper: L− (det ` = −1) L↑− L↓−

We’ll focus on the proper orthochronous subgroup L↑+.

1.3 Proper Time and Four-Velocity

If we consider a displacement
ηµν∆xµ∆xν = −∆t2 + ∆x2, (1.12)

we can transform to another coordinate system where the spatial displacement ∆x′ = 0 and the time
interval is ∆t′ := ∆τ . This time interval is called the proper time interval, ∆τ . In terms of the
original coordinates, it is

∆τ2 = ∆t2 −∆x2. (1.13)

The proper time is the time measured by a clock travelling with the observer along the path. Notice
that in the proper time frame the spacetime interval is

ηµν∆xµ∆xν = −∆τ2 ≤ 0. (1.14)
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Thus, the proper time cannot be used to parametrise spacelike paths. For null paths, where s2 = 0,
the proper time is zero. i.e. light takes “zero proper time” to travel through space.

There is a simple relation between the proper time τ and the time t measured by some external
observer.

dτ2 = dt2 − dx2

= dt2

[
1−

(
dx

dt

)2
]

= dt2(1− β2)

=⇒ dτ = dt
√

1− β2

=⇒ dt

dτ
= γ. (1.15)

We can use the proper time to define the four-velocity

uµ :=
dxµ

dτ
. (1.16)

We can see from this definition that the four-velocity is normalised to −1.

uµu
µ = ηµνu

µuν

= ηµν
dxµ

dτ

dxν

dτ

= (−1)

(
dt

dτ

)2

+ (1)

(
dx

dτ

)2

= −
(
dt

dτ

)2
[

1−
(
dx

dτ

)2(
dτ

dt

)2
]

= −γ2

[
1−

(
dx

dt

)2
]

= − 1

1− β2
(1− β2)

= −1. (1.17)

We are always able to move to a rest frame where the particle is not moving with respect to the origin.
In that case, the four-velocity is

u0 = 1, ui = 0. (1.18)

1.4 The Twin Paradox

An interesting consequence of proper time is the so-called “Twin Paradox”. Suppose there is a pair
of identical twins; Alice and Bob. At some time, both twins are at the same position in space. Then,
Bob takes off in a rocket with speed β (Fig. 3). After a while he turns around and comes back, taking
the same amount of time both ways.

The proper time as measured by Alice (along the blue path) is simply τA = 2T . As measured by Bob
(along the red path), it’s given by the Lorentz transformation

τB = 2γ(T − β(βT )) =
1− β2√
1− β2

T = 2
√

1− β2T (1.19)
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Figure 3: Setup for the Twin Paradox

So, we see that
τA
τB

=
2T√

1− β22T
= γ. Since γ ≥ 1, Alice ages faster than Bob by a factor of γ.

To give an idea of how small this effect is in everyday life, when astronauts Mark Kelly and Mikhail
Kornienko were on the International Space Station, they spent 340 days travelling at about 7,500 m/s
relative to the Earth’s surface. We thus have a Lorentz factor

γ =

[
1−

(
7.5× 103

3× 108

)2
]−1/2

= 1 + 3.125× 10−10. (1.20)

Over 340 days, this equates to someone on Earth ageing by an additional†

(3.125× 10−10)(60)2(24)(340) ' 9 milliseconds. (1.21)

2 Examples of Curved Spacetime

2.1 Warp Drives

In an effort to rope you in with Sci-Fi, we’ll start with a warp drive spacetime. Consider the metric

ds2 = −dt2 + (dx− vsf(rs)dt)
2 + dy2 + dz2. (2.1)

Here, vs =
dxs
dt

is the slope of a spacelike trajectory xs(t). r
2
s = (x − xs(t))2 + y2 + z2 is the spatial

distance, and f is a smooth function of rs such that f(0) = 1 and f(R) = 0, where R << x is a
cylindrical radius around xs(t).

Due to the function f(rs), the spacetime outside the cylinder is just Minkowski space and light cones
points along the t axis. As a result, a timelike particle would not be able to access the spacelike
trajectory. Inside the cylinder however, we have a different spacetime. We can find the light cone by

†There is actually an additional factor at play here; the gravitational time dilation due to the presence of a gravitational
field. A gravitational potential actually makes the twin further from the Earth’s surface age faster, lessening the effects
of the additional speed!
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computing ds2 = 0. On the trajectory xs(t), we have f(0) = 1, so

ds2 = 0 = −dt2 + (dx− vsdt)2

=⇒ dt2 = (dx− vsdt)2

dx− vsdt = ±dt
dx

dt
= vs ± 1

=
dxs
dt
± 1. (2.2)

The light cone points along the trajectory xs(t), so the spacelike trajectory is accessible to a timelike
particle entering the trajectory at the origin.

Figure 4: The warp drive spacetime.

This allows a timelike particle to “travel” at and above the speed of light, however such a spacetime
requires a negative energy density.

2.2 Wormholes

In yet another cheap attempt at keeping your attention, we’ll now consider a traversible wormhole.
Consider the 2 + 1 dimensional metric

ds2 = −dt2 + dr2 + (b2 + r2)dφ2, φ ∈ [0, 2π]. (2.3)

We see that if b = 0, we just get flat Minkowski space in polar coordinates, and for r >> b we also have
flat space, since r2 + b2 ' r2. We can embed this metric into 3 + 1 dimensional space in cylindrical
coordinates:

ds2
cyl = −dt2 + dz2 + dρ2 + ρ2dφ2, φ ∈ [0, 2π]. (2.4)

We can rewrite this cylindrical metric in terms of the dependence on ρ, namely

ds2
cyl = −dt2 +

(
dz

dρ

)2

dρ2 + dρ2 + ρ2dφ2. (2.5)
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To match these two metrics, we need the functions ρ(r) and z(r), both in terms of r. We can write
the metric in terms of r as

ds2
cyl = −dt2 +

(
dρ

dr

)2
[(

dz

dρ

)2

+ 1

]
dr2 + ρ2dφ2

= −dt2 +

[(
dz

dr

)2

+

(
dρ

dr

)2
]
dr2 + ρ2dφ2. (2.6)

Matching coefficients with (2.3), we see immediately from the dφ2 term that

ρ2 = r2 + b2 =⇒ ρ =
√
r2 + b2, dρ =

r√
r2 + b2

dr. (2.7)

Using this on the dr2 term, we find an equation for z(r)(
dz

dr

)2

+
r2

r2 + b2
= 1. (2.8)

The solution to this equation is

z(r) = ±b ln

(
r +
√
r2 + b2

C

)
(2.9)

for some integration constant C. We can fix C = b by imposing z(r = 0) = b.

This spacetime is called an Ellis wormhole, and connects two copies of Minkowski space together
via a “throat” at the origin.

Figure 5: An Ellis wormhole, with one possible geodesic path marked in black.
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3 Linearised Gravity

3.1 The Equivalence Principle

The Einstein Equivalence Principle (EEP) asserts that in small enough regions of spacetime, physics
reduces to that of Special Relativity. As a result, it’s not possible to differentiate between a uniformly
accelerating reference frame and a gravitational field.

In terms of Riemannian geometry, this statement is the same as the ability to find Riemann Nor-
mal Coordinates at each point on a manifold. The geodesic equation, for example,

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 (3.1)

reduces (in RNCs, where the connection vanishes) to
d2xµ

dτ2
= 0, which is the equation for a line.

When we do have a gravitational field, we’d want to hope that the geodesic equation above gives
the correct answer in the non-relativistic limit. That is, it reduces to Newton’s law of gravitation

ag = −∇Φ = −GM
r2

. (3.2)

This Newtonian approximation requires that we have both slow moving particles and a weak, static
gravitational field. The requirement of the particles being slow-moving is

dxi

dτ
<<

dx0

dτ
=
dt

dτ
. (3.3)

Thus, neglecting all except the ρ = 0, σ = 0 terms, the geodesic equation becomes

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)2

= 0. (3.4)

Since the field is static, the time derivatives in the Christoffel symbols vanish:

Γµ00 =
1

2
gµλ(∂0gλ0 + ∂0g0λ − ∂λg00)

= −1

2
gµλ∂λg00. (3.5)

Decomposing the weak-field metric into the Minkowski metric, ηµν , plus a perturbation yields

gµν = ηµν + hµν , |hµν | << 1. (3.6)

The inverse metric definition gµνgνσ = δµσ gives that

gµν = ηµν − ηµρηνσhρσ = ηµν − hµν . (3.7)

We thus have for the Christoffel components

Γµ00 = −1

2
ηµλ∂λh00, (3.8)

which simplifies the geodesic equation to

d2xµ

dτ2
=

1

2
ηµλ∂λh00

(
dt

dτ

)2

. (3.9)
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Noticing that for µ = 0 this equation simply gives
d2t

dτ2
= 0, we find that

dt

dτ
is constant. Since

the spacelike components of the Minkowski metric are just 1s, we can write the rest of the geodesic
equation as

d2xi

dτ2
=

1

2

(
dt

dτ

)2

∂ih00,

=⇒ d2xi

dt2
=

1

2
∂ih00. (3.10)

If we let h00 = −2Φ, this equation is exactly Newton’s gravitational law:

d2x

dt2
= a = −∇Φ. (3.11)

Identifying h00 in this way means the metric has the component

g00 = −(1 + 2Φ) = −
(

1− 2GM

r

)
. (3.12)

3.2 Gauge Invariance

As previously, the weak gravity condition is

gµν = ηµν + hµν , |hµν | << 1. (3.13)

In this regime, the Christoffel connection becomes

Γρµν =
1

2
ηρλ(∂µhνλ + ∂νhµλ∂λhµν). (3.14)

The Riemann and Ricci tensors are (to first order)

Rµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ)

Rµν = ∂µ∂νh
µν − ∂µ∂µ(ηµνhµν) = ∂µ∂νh

µν −�h,
(3.15)

where here h := ηµνhµν and � = ∂µ∂
µ. The Einstein tensor becomes

Gµν = Rµν −
1

2
gµνR

=
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�h− ηµν∂α∂βhαβ + ηµν�h

)
. (3.16)

There is a gauge freedom in the perturbation hµν due to the fact that in different coordinate systems,
the perturbation hµν may have a different form. The equivalent perturbations can be considered a set
of diffeomorphisms leaving hµν small. In general, we would have, for sufficiently small ε,

h′µν = hµν + εLξgµν (3.17)

where ξ is the vector field generating the diffeomorphism. Since the Lie derivative of the metric is
zero, this can be written as

h′µν = hµν + ε(∇µξν +∇νξµ). (3.18)

One such choice of gauge is the Lorenz gauge

∂µh
µ
ν −

1

2
∂νh = 0. (3.19)

If we let h̄µν = hµν −
1

2
ηµνh, then the Lorenz gauge condition becomes

∂µh̄
µ
ν = ∂µh̄µν = 0. (3.20)
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3.3 Linearised Field Equations

With the Lorenz gauge condition and the linearised Einstein tensor, we can find the linearised Einstein
field equations. Note that taking the trace of h̄µν (in 3 + 1 dimensions) gives

h̄ = h− 1

2
4h = −h (3.21)

The perturbation can then be written as

hµν = h̄µν −
1

2
ηµν h̄. (3.22)

Putting this into the Einstein tensor, we get

Gµν = −1

2
�h̄µν + ∂α∂(µh̄ν)α −

1

2
ηµν∂

α∂βh̄αβ . (3.23)

Using the Lorenz gauge condition (3.20), we get simply

Gµν = −1

2
�h̄µν . (3.24)

The linearised Einstein field equations are then

�h̄µν = −16πGTµν . (3.25)

In the static case, these equations are solvable. We find

∇2h̄00 = −16πGT00 (3.26)

which has a solution in terms of the gravitational potential

h̄00 = −4Φ. (3.27)

Moving back to the original perturbation, we recover h00 = −2Φ as before. We additionally find that
hij = 0 for i 6= j and hii = −2Φ. The full linearised metric is then

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dx2. (3.28)

3.4 Gravitational Radiation

We can now consider the example of a gravitating system emitting gravitational waves in the linearised
regime. This is very similar to moving radiating charges in electromagnetism. We have the linearised
field equations

�h̄µν = −16πGTµν . (3.29)

The solution to this equation is given in terms of the retarded Green’s function G(x, y)‡ defined by

�G(x, y) = δ(4)(x− y) =⇒ G(x, y) = − 1

4π|x− y|
Θ(x0 − y0)δ(|x− y| − (x0 − y0)). (3.30)

This gives the solution

h̄µν = −16πG

∫
d3yG(x− y)Tµν(y) = 4G

∫
d3y

Tµν(tR,y)

|x− y|
, (3.31)

‡Not to be confused with Newton’s constant, G, or the Einstein tensor Gµν . There are not enough letters...
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where tR = t− |x− y| is the retarded time.

Performing a Fourier transform in t, we find

˜̄hµν =
1√
2π

∫
dteiωth̄µν(t,x)

=
4G√
2π

∫
dtRd

3yeiωtR+iω|x−y|Tµν(tR,y)

|x− y|

= 4G

∫
d3yeiω|x−y|

T̃µν(ω,y)

|x− y|
. (3.32)

Here, T̃µν is the Fourier transform of the stress-energy tensor. If we consider a slow moving far field
such that r ' |x− y| is constant and much larger than the radius of the source, we have

˜̄hµν = 4G
eiωr

r

∫
d3yT̃µν(ω,y). (3.33)

Recalling the condition ∂µ
˜̄hµν = 0, we get from the above ˜̄h0ν =

i

ω
∂i
˜̄hiν . Then,∫

d3yT̃ ij =

∫
d3y

[
∂k(yiT̃ kj − yj∂kT̃ kj

]
= iω

∫
d3y yj T̃ 0j

=
iω

2

∫
d3y

(
yiT̃ 0j + yiT̃ 0i

)
=
iω

2

∫
d3y ∂l

(
yiyj T̃ 0l

)
− yiyj∂lT̃ 0l

= −ω
2

2

∫
d3y yiyj T̃ 00. (3.34)

This integral is the Fourier transform of the quadrupole moment

qij = 3

∫
d3y yiyjT 00(t,y). (3.35)

Thus, we have ˜̄hij(ω,x) = −2Gω2

3

eiωr

r
q̃ij =⇒ h̄ij(t,x) =

2G

3r

d2qij
dt2

∣∣∣∣
tR

. (3.36)

At a second order expansion, the Einstein tensor is proportional to an effective stress-energy tensor

tµν =
1

32πG
∂µh

α
β∂νh

β
α. (3.37)

From this we can find the energy loss over time due to gravitational radiation.

− dE
dt

=
G

45

...
Qij

...
Qij
∣∣
tR
, Qij = qij −

1

3
δijδ

klqkl. (3.38)

In the case of a binary star system with equal mass stars separated by a diameter 2r, the frequency of

rotation is Ω =
1

r

√
GM

4r
. The gravitational charge is in terms of the mass distribution T 00 =Mδ(3)(x−

xstar) as

Qij = Mr2

(
3 cos 2Ωt+ 1 3 sin 2Ωt

3 sin 2Ωt −3 cos 2Ωt+ 1

)
,

...
Qij = 12Mr2Ω3

(
sin 2Ωt − cos 2Ωt
− cos 2Ωt − sin 2Ωt

)
. (3.39)

The radiated power is then

− dE
dt

=
128G

5
M2r4Ω6. (3.40)
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4 Static, Spherically Symmetric Spacetimes

4.1 Circular Orbits

The metric for a static, spherically symmetric spacetime is the Schwarzschild solution

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (4.1)

where 2GM := Rs is the Schwarzschild radius and dΩ2 = dθ2 + sin2 θdφ2 is the metric on the unit
2-sphere. For a timelike geodesic parametrised by the proper time τ , the geodesic equation decomposes
into four coupled equations.

d2t

dτ2
+

2GM

r(r − 2GM)

dr

dτ

dt

dτ
= 0

d2r

dτ2
+
GM

r3
(r − 2GM)

(
dt

dτ

)2

− GM

r(r − 2GM)

(
dr

dτ

)2

− (r − 2GM)

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]

= 0

d2θ

dτ2
+ 2

dθ

dτ

dr

dτ
− sin θ cos θ

(
dφ

dτ

)2

= 0

d2φ

dτ2
+

2

r

dφ

dτ

dr

dτ
+

2 cos θ

sin θ

dθ

dτ

dφ

dθ
= 0.

(4.2)

Because we have spherical symmetry, we can consider an equatorial geodesic with θ =
π

2
which reduces

these equations to

d2t

dτ2
+

2GM

r(r − 2GM)

dr

dτ

dt

dτ
= 0

d2r

dτ2
+
GM

r3
(r − 2GM)

(
dt

dτ

)2

− GM

r(r − 2GM)

(
dr

dτ

)2

− (r − 2GM)

(
dφ

dτ

)2

= 0

d2φ

dτ2
+

2

r

dφ

dτ

dr

dτ
= 0.

(4.3)

The remaining symmetries correspond to the killing vectors

kµ = (1, 0, 0, 0)

Rµ = (0, 0, 0, 1).
(4.4)

The energy is given by

E = −kµ
dxµ

dτ
= −gµνkν

dxµ

dτ
=

(
1− 2GM

r

)
dt

dτ
. (4.5)

As r →∞, E ' dt

dτ
so for timelike geodesics we have E ' γ, i.e. the energy per unit mass.

The angular momentum is

L = Rµ
dxµ

dτ
= r2 dφ

dτ
. (4.6)

The normalisation condition for the four-velocity can be written as

ε = −gµνuµuν , (4.7)

12



where ε = 1 for timelike curves and ε = 0 for null curves. Expanding this condition gives

ε =

(
1− 2GM

r

)(
dt

dτ

)2

−
(

1− 2GM

r

)−1(
dr

dτ

)2

− r2

(
dφ

dτ

)2

(
1− 2GM

r

)
ε =

(
1− 2GM

r

)2(
dt

dτ

)2

−
(
dr

dτ

)2

− r2

(
1− 2GM

r

)(
dφ

dτ

)2

= E2 −
(
dr

dτ

)2

− L2

r2

(
1− 2GM

r

)
1

2
E2 =

1

2

(
dr

dτ

)2

+ Veff(r) (4.8)

where Veff(r) =
1

2

(
1− 2GM

r

)(
L2

r2
+ ε

)
is the effective potential.

In the timelike case (ε = 1), we get

Veff(r) =
1

2
− GM

r
+
L2

2r2
− GML2

r3
(4.9)

The first three terms constitute the usual effective Newtonian potential for circular motion, and the
last term is a correction of General Relativity. This potential is plotted in Fig. 6 for different values
of GM and L.

The maxima and minima of the potential are given by

dVeff

dr
=

1

r4

[
GMr2 − L2r + 3GML2

]
= 0. (4.10)

The solutions are

R± =
L2 ±

√
L4 − 12L2G2M2

2GM
. (4.11)

Whenever L2 < 12G2M2 there are no extrema, as seen in Fig. 6 (a). To have a circular orbit, we
much have L2 > 12G2M2, as in Fig. 6 (b). This means stable circular orbits occur at R+ > 6GM ,
and r = 6GM is the smallest stable circular orbit.

With unstable orbits, as L→∞ we find

R− '
L2 − L2(1− 12G2M2

L2 )1/2

2GM
= 3GM, (4.12)

so the smallest unstable circular orbit is at r = 3GM (from above), as in Fig. 6 (c).

The condition for a circular orbit, (4.10), gives us an expression for the angular momentum

L2 =
GMR2

R− 3GM
. (4.13)

Substituting this into the energy equation (4.8), we get

1

2
E2 =

1

2R

(R− 2GM)2

R− 3GM
=⇒ E(R) =

R− 2GM√
R
√
R− 3GM

. (4.14)

For R < 4GM , E(R) > 1 so the particle can escape to infinity. At the last stable orbit, R = 6GM ,
we find

E =
2
√

2

3
< 1, (4.15)

so the bound energy is 1 − 2
√

2

3
' 0.06. A particle spiralling from infinity radiates out about 6% of

its energy.
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(a) Veff(r) for GM = 1 and L = 1.

(b) Veff(r) for GM = 0.5 and L = 1.8.

(c) Veff(r) for GM = 1 and L = 10.

Figure 6
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4.2 Orbital Precession

A particle in the last stable circular orbit (R = 6GM) will oscillate around the stable minimum if
perturbed. In the radial direction, this oscillation is

ω2
r =

d2Veff

dr2

∣∣∣∣
R+

=
1

R4
+

(2GMR+ − L2)

=
1

R+

GM(R+ − 6GM)

R+ − 3GM
. (4.16)

Supposing that R+ << GM , we see that

ω2
r '

GM

R3
+

. (4.17)

The radial frequency can also be computed as

ω2
φ =

L2

R4
+

=
GM

R2
+(R+ −GM)

(4.18)

To leading order, this is again ω2
φ '

GM

R3
+

. To leading order, the orbit is closed but the subleading

terms lead to an orbital precession

ωp = ωφ − ωr = ωφ

[
1−

√
1− GM

R+

]
' ωφ

3GM

R+
=

3(GM)3/2

R5/2
. (4.19)

This precession of the perihelion of Mercury is one of the classical tests of General Relativity, since
Newtonian mechanics cannot account for the experimentally measured precession. Corrections due to
GR agree (almost) perfectly with the observed value.

4.3 Scattering in Spherical Spacetime

As in classical mechanics, a particle moving past a central mass will have its trajectory deflected. The
motion of such a particle is described by the equation we found from the normalisation condition,
(4.8), namely

1

2
ṙ2 + Veff(r) =

1

2
E2, Veff(r) =

L2

r2

(
1

2
− GM

r

)
. (4.20)

If the central mass is removed, i.e. M = 0, we expect that the particle’s trajectory will be undisturbed.
In this case, we have

Veff(r)|M=0,r=b =
L2

2b2
=
E2

2
, (4.21)

where here r = b is the impact parameter. We see that this impact parameter is given by b =
L

E
.

Using the definition of the angular momentum, we have

L = r2φ̇ =⇒ dφ

dr
=
φ̇

ṙ
=
L

r2

1√
E2 − L2

r3 (r − 2GM)
. (4.22)

The total angular deflection is the integral

∆φ = 2

∫ ∞
r0

b

r2

dr√
1− b2

r2 (r − 2GM)
(4.23)
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where here r0 is the minimum of the trajectory, given by the solution to ṙ = 0. If M = 0, then we
have r0 = b and the integral is computable using the substitution u = 1/r.

∆φ|M=0 =

∫ 1/r0

0

du√
r−2
0 − u2

= π. (4.24)

Making a far-field (or weak mass) approximation b >> GM , we can expand the integral in powers of
M . This gives a first-order correction

∆φ = π +
4GM

r0
+O(M2). (4.25)

In the relativistic case, there is not just angular scattering but also “scattering through time”; the
so-called Shapiro time delay. If we consider free space, the time taken for a particle to move from some
point R1 to R0 is simply

∆t =
√
R2

1 −R2
0. (4.26)

In the presence of a mass, we have (similar to the φ case)

dt

dr
=
ṫ

ṙ
=

[(
1− 2GM

r

)(
1− b2

r2

(
1− 2GM

r

))]−1

. (4.27)

So the total time is

T =

∫ r1

r0

1

(1− 2GM
r )

dr√
1− b2

r2 (1− 2GM
r )

. (4.28)

The first correction at O(M) in the weak field approximation is

T = 2GM ln

(
r1 +

√
r2
1 − r2

0

r0

)
+GM

√
r1 − r0

r1 + r0
. (4.29)

When r0 << r1, this becomes

T ' 2M ln

(
2r1

r0

)
. (4.30)

For more on the topic of relativistic scattering and how it’s related to quantum field theories, you
can read Chapter 4 of my final year project on Gravitational Time Delay at liamkavanagh.ie/project.
There’s also many papers in the References worth reading.
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5 Black Holes

5.1 Extended Spacetimes

If we consider the Schwarzschild metric, (4.1), null geodesics satisfy(
dt

dr

)2

=

(
r

r − 2M

)2

. (5.1)

Here, we have set G = 1 for convenience. It can be recovered by the transformation M → GM . The
solutions here are

t = ±r∗ + c, r∗ = r + 2M ln
(
r

2M − 1
)

(5.2)

for some constant c. We can move to a transverse coordinate system by letting

u = t− r∗
v = t+ r∗.

(5.3)

Then, the Schwarzschild metric can be written in terms of u, v and the original r as

ds2 = − 2M
r e
−r/2Me(v−u)/4Mdudv (5.4)

Defining
U = −e−u/4M ∈ (−∞, 0)

V = ev/4M ∈ (0,∞),
(5.5)

the metric becomes

ds2 = −32M3

r
e−r/2MdUdV. (5.6)

Because nothing funny happens when U or V go to zero, discontinuities and the like, we can extend
this spacetime to the full region (−∞,∞). Changing coordinates once again to

T =
U + V

2
,

X =
V − U

2
,

(5.7)

we get

ds2 =
32M2

r
e−r/2M (−dT 2 + dX2). (5.8)

This spacetime is shown in Fig. 7. Note that UV = −( r
2M −1)e−r/2M . As r → 0, the metric curvature

blows up and we get a singularity. This occurs at UV = 1. The surface of r = 2M , i.e. UV = 0 is the
event horizon.
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Figure 7: A diagram of the extended spacetime, showing the four different spacetime regions. Null
geodesics are lines T = ±X + c. An observer in region II cannot communicate with an observer in
region I as it would require propagation of light outside the light cone.

At t = 0 along the equatorial plane, the Schwarzschild metric is

ds2 =
dr2

1− 2M
r

+ r2dφ2. (5.9)

In cylindrical coordinates, we can identify ρ(r) = r and z(r) = ±
√

8M(r − 2M). This is the metric of
a wormhole existing instantaneously at t = 0.

5.2 Charged and Rotating Black Holes

The Schwarzschild solution describes an electrically neutral, non-rotating black hole. A charged black
hole can be found by solving the Einstein field equations with the electromagnetic stress-energy tensor.
The solution is the Reissner-Nordström metric

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2
2, (5.10)

where ∆ = 1 − 2GM

r
+
G

r2
(Q2 + P 2). Here, Q and P are the total electric and magnetic charges§,

respectively.

Depending on the parameters, any of three scenarios may occur. The event horizon is specified by the
equation ∆ = 0, which has solutions

r± = M ±
√
M2 − (Q2 + P 2). (5.11)

If M2 < Q2 + P 2, then there is no event horizon, but there is a “naked” singularity at r = 0.

If M2 > Q2 +P 2, there is an infinite chain of horizons connecting asymptotic spacetimes (see Fig. 8).

§Note that usually P = 0 as magnetic monopoles have never been observed.
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Figure 8: Several Penrose diagrams for black holes. Source: AkanoToE.

A rotating neutrally-charged black hole is described by the (somewhat unwieldy) Kerr metric

ds2 = −
(

1− 2Mr

ρ2

)
dt2 − 2Mar sin2 θ

ρ2
2dtdφ+

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2.

(5.12)

Here, we have the parameters ∆ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ, and a =
J

M
, the ratio of the

angular momentum to the mass. As a → 0, we recover the Schwarzschild metric and as M → 0 we
recover Minkowski spacetime.

The singularity of a Kerr black hole is a ring, occuring at θ =
π

2
and the horizon is at ∆ = 0.

There are two horizon surfaces, found at r± = M ±
√
M2 − a2.

There are two Killing vectors generating symmetries, namely ∂t and ∂φ. In the case of ∂t, we have

|∂t|2 = − 1

ρ2
(∆− a2 sin2 θ). (5.13)

We have |∂t|2 = 0 on the stationary limit surface defined by (r −M)2 = M2 − a2 cos2 θ. This is the
boundary of the ergosphere, a region where there are no stationary observers. In order to remain on
a timelike trajectory, particles must rotate with the black hole.
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Figure 9: The features of a Kerr black hole. Source: Yukterez (Simon Tyran, Vienna).

6 Cosmology

6.1 The Friedmann–Lemâıtre–Robertson–Walker Metric

The Friedmann-Lemâıtre-Robertson-Walker (FLRW)¶ metric describes an isotropic universe whose
size changes over time. It is given by

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (6.1)

where k = 0 is flat space, k = +1 is a closed (spherical) universe, and k = −1 is an open (hyperbolic)
universe.

The Einstein field equations for a perfect fluid of density ρ and pressure P , with an additional cosmo-
logical constant is

Gµν + Λgµν = (ρ+ P )uµuν + Pgµν . (6.2)

The solutions are the Friedmann equations

ȧ2 + k

a2
=

8πGρ+ Λ

3
ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
.

(6.3)

Introducing the Hubble parameter H =
ȧ

a
and the density parameter Ω =

8πGρ

3H2
, we can write the

first equation (with Λ = 0) as

Ω− 1 =
k

H2a2
. (6.4)

By measuring Ω we can determine which kind of universe we live in (open, closed, or flat).

Often an assumption is made that the equation of state is P = ωρ. This is a good assumption
for dealing with a homogeneous dust (ω = 0) or radiation-filled space (ω = 1/3).

¶Sometimes called the Friedmann metric or FRW metric, or many other combinations. Naming everyone seemed the
least controversial. Also, Lemâıtre’s name has historically been dropped from many concepts he helped create, such as
the Hubble-Lemâıtre Law, so I thought it important to include him.
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6.2 The Cosmological Constant

With the stress-energy tensor of a cosmological constant Λgµν , we have a condition on the density and
pressure that

ρ = −P =
Λ

8πG
. (6.5)

This gives the cosmological constant an equation of state P = ωρ with ω = −1.

The continuity equation ∇µTµν = 0 gives the equation

3
ȧ

a
(ρ+ P ) = −ρ̇. (6.6)

Using the equation of state P = ωρ, this equation has solutions of the order

ρ ∼ a−3(1+ω). (6.7)

In the three cases of dust, radiation, and a cosmological constant we get

ω Source Density

0 dust ρ ∼ a−3

1/3 radiation ρ ∼ a−4

−1 Λ ρ ∼ const.

We see that the cosmological term dominates in the expansion.
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