
MAU34301 - Differential Geometry

Brief Notes

Liam Kavanagh
B.A. Theoretical Physics

“Differential Geometry is the study of things that are invariant under change of notation.”

Mathematical Proverb

1 Manifolds∗

1.1 Topological Spaces

A topological space is a set X of which the open sets of the topological space satisfy

(a) For any two open sets X1, X2 ⊂ X, X1 ∩X2 and X1 ∪X2 are also open sets.

(b) The empty set ∅ and the whole set X are open.

The complement X ′1 of any open set X1 is called a closed set of the topological space.

Rn induces an induced topology on a subset A ⊂ Rn through the intersections A ∩ U where U
ranges over all open sets of Rn.

A map f : X → Y between topological spaces X and Y is continuous if the complete inverse
image f−1(U) of every open set U ⊆ Y is open in X.

Two topological spaces X and Y are topologically equivalent, or homeomorphic if there is a
bijective map between them such that both it and its inverse are continuous.

The topology on a manifold M :
In every chart Uq, the open regions are open in the topology on M . The totality of open sets on M
is found by ensuring all arbitrary unions of collections of these regions is also open. Any open subset
V ⊂M inherits - i.e. has induced on it - the structure of a manifold: V = ∪qVq where Vq = V ∩ Uq.

A metric space is a set equipped with a real-valued “distance function”, or metric, ρ(x, y) defined
on pairs x, y of elements of the set. The metric satisfies

(a) Symmetry: ρ(x, y) = ρ(y, x),

(b) Positivity: ρ(x, y) ≥ 0 with equality only for x = y,

(c) The triangle inequality: ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

∗For the purposes of covering the module’s examinable material, I am discussing manifolds as they are in the lecture
notes. If you would like a more intuitive discussion of the geometry of manifolds, consult Chapter 2 of Lecture Notes on
General Relativity [1] by Sean M. Carroll.
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Example: n-dimensional Euclidean space Rn is a metric space with metric

ρ(x, y) =

√√√√ n∑
α=1

(xα − yα)2. (1.1)

A metric space can be induced with a topology by taking as its open sets the unions of open balls.
The elements x of an open ball with centre x0 and radius ε satisfy

ρ(x, x0) < ε. (1.2)

A topological space X is compact if every countable collection of open sets covering X contains a
finite subcollection also covering X.

A topological space is connected if any two points can be joined by a continuous path.

A topological space is called Hausdorff† if any two points are contained in disjoint open sets.
All metric spaces are Hausdorff since two open balls with centres x0 and y0 and radii ρ(x0, y0)/3 do
not intersect. The manifolds we consider will be Hausdorff spaces.‡

1.2 Manifold Definitions

A region is a set D ⊂ Rn s.t.

∀P0 = (x10, ..., x
n
0 ) ∈ D,∃ε > 0 s.t.

{
P = (x1, ..., xn) : |xi − xi0| < ε, i = 1, ..., n

}
⊂ D. (1.3)

A differentiable n-dimensional manifold is a set M which is the union of a collection of subsets
Uq with the properties:

(i) Each subset Uq has defined on it coordinates xαq , α = 1, ..., n called local coordinates. Through
these coordinates, Uq looks like a region of Euclidean space with coordinates xαq . The subsets Uq
together with their local coordinates are called charts.

(ii) Each non-empty intersection Up ∩ Uq of charts has defined on it two coordinate systems; (xαp )
and (xαq ). We require that the intersection Up∩Uq can be expressed in terms of either coordinate
system and that they are related in a smooth, one-to-one way. The transition functions from
xαq to xαp and vice versa are

xαp = xαp (x1q, ..., x
n
q ),

xαq = xαq (x1p, ..., x
n
p ).

(1.4)

The Jacobian Jpq = det

(
∂xαp

∂xβq

)
is non-zero on Up ∩ Uq.

In Fig. (1), we have M = ∪qUq. For each chart Uq, there exists a smooth one-to-one map φq : Uq → Rn,
n = dimM , such that xαq = φq(P )α for all P ∈ Uq. Thus, P = φ−1q (xq).

For the intersections Up ∩ Uq, we have the relations

xαq = φq(φ
−1
p (xp))

α =
[
(φq ◦ φ−1p (xp)

]α
,

xαp = φp(φ
−1
q (xq))

α =
[
(φp ◦ φ−1q (xq)

]α
.

(1.5)

†The Hausdorff condition is that any two points can be “housed off” from each other by open sets (pun).
‡Felix Hausdorff lectured at the University of Bonn and in their Mathematics Institute, there is a room named the

“Hausdorff-Raum”, which is a pun because in German “Raum” can mean both “room” and “space”.
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An indexed collection {(Uq, φq)} of charts Uq along with the maps φq form an atlas of the manifold.

A manifold M is oriented if the atlas can be chosen so that for every pair Up, Uq of intersecting
charts the Jacobian J of the transition functions is positive. e.g. Rn and Sn are oriented. We say that
two coordinate systems x and y define the same orientation of Rn if J > 0 and opposite orientations
if J < 0.

Figure 1: The maps from M to Rn.

1.3 Examples of Manifolds

1. Trivially, any Euclidean space of regions is a manifold.

2. A region of complex space Cn can be regarded as a region of R2n, so Cn is a manifold.

3. The circle S1 is a manifold:

Figure 2: The unit circle embedded in R2.

Consider Fig. (2), the unit circle embedded in R2: x2 + y2 = 1. We introduce two subsets
UN = S1 − (0, 1) and US = S1 − (0,−1). The local coordinates uN and uS are obtained using a
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stereographic projection onto y = −1 and y = +1:

P = (x, y)→ uN =
2x

1− y
,

P = (x, y)→ uS =
2x

1 + y
.

(1.6)

The intersection UN ∩ US excludes x = 0, i.e. uN = uS = 0.

The transition functions are found from uNuS =
2x

1− y
2x

1 + y
=

4x2

1− y2
=

4x2

x2
= 4, and on UN ∩US

where uN , uS 6= 0, we have

uN =
4

uS
=⇒ ∂uN

∂uS
= − 4

u2S
=⇒ JNS = det

(
∂uN
∂uS

)
= − 4

u2S
6= 0. (1.7)

4. See Slides_Diff_Geom-p1.pdf, p. 21 for the example of S2.

5. In general, an n-sphere Sn is a manifold.

6. Given two manifolds M = ∪qUq, N = ∪pVp, we can construct their direct product

M ×N = ∪q,pUq × Vp (1.8)

where the coordinates on Uq × Vp are (xαq , y
β
p ).

1.4 Mappings Between Manifolds

Let M = ∪pUp and N = ∪q, Uq be m and n dimensional manifolds with coordinates (xαp ) and (yβq ),
respectively.
Suppose a mapping f : M → N determines functions yβq (x1p, ..., x

m
p ) = f(x1p, ..., x

m
p )βq . The function f

is said to be smooth of smoothness class k if for all p, q the functions yβq are smooth of smoothness

class k, that is, all the partial derivatives up to kth order exist and are continuous. The smoothness
class of f cannot exceed the smoothness class of the manifolds.

Figure 3:

In Fig. (3), the four maps f , φp, ψq, and ψq ◦ f ◦ φ−1p are smooth. We use the notation

yβq =
[
(ψq ◦ f ◦ φ−1p )(x1p, ..., x

m
p )
]β

:= fβ(x1p, ..., x
m
p ) = yβq (x1p, ..., x

m
p ). (1.9)
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Notice that since we have maps from the manifolds to Euclidean space, we can use analysis on them.
We can construct the map f : M → N from the charts as (ψq ◦ f ◦ φ−1p ) : Rm → Rn. Since this is a
map between Euclidean spaces, we can differentiate normally. This is a notational shortcut which is
really just

∂f

∂xα
=

∂

∂xα
(ψq ◦ f ◦ φ−1p )(x1p, ..., x

m
p ). (1.10)

If N = R is the real line, then f is a real-valued function of the points of M .

The manifolds M and N are said to be smoothly equivalent or diffeomorphic if there exists
a bijective map f such that both f : M → N and f−1 : N →M exist and are smooth of class k ≥ 1.

Since f−1 exists, the Jacobian Jpq = det

(
∂yβq
∂xαp

)
is non-zero everywhere.

1.5 Tangent Spaces

Let x = x(τ), a ≤ τ ≤ b be a curve segment on a manifold M 3 x(τ). In any chart Up with coordinates
xαp , the curve is described by the parametric equations

xαp = xαp (τ), α = 1, ...,m. (1.11)

The velocity vector tangent to the curve is

v := ẋ = (ẋ1p, ..., ẋ
m
p ). (1.12)

In the intersection Up ∩ Uq, we have two equally good coordinate systems xαp (τ) and xβq (τ) such that

xαp (x1q(τ), ..., xmq (τ)) = xαp (τ). (1.13)

The velocities are thus related by (sum over β)

ẋαp =
∂xαp

∂xβq
ẋβq . (1.14)

A tangent vector to a m-dim manifold M at some point x is represented in terms of local coordinates
xαp by the m-tuple (ξα) of components of the vector such that in any other local coordinate system

ξαp =
∂xαp

∂xβq
ξβq . (1.15)

The set of all tangent vectors to a manifold M at x forms a vector space of dimension m = dimM ,
called the tangent space to M at x, denoted Tx = TxM .

The velocity vector at x of any smooth curve of M through x is a tangent vector to M at x.

From (1.15), we see that the operators
∂

∂xα
form a basis eα =

∂

∂xα
of one-forms for the tangent

space Tx:

ξαp
∂

∂xαp
= ξβq

∂

∂xβq
(1.16)

As with the manifolds themselves, we can form maps between tangent spaces of the manifolds.
A smooth map f : M → N gives rise to a push-forward or induced linear map of tangent spaces

f∗ : TxM → Tf(x)N (1.17)
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defined as sending the velocity vector at x of some smooth curve x(τ) on M to the velocity vector at
f(x) of the curve f(x(τ)) on N . In terms of local coordinates xα on M and yβ on N , the push-forward
map is

ξα → ηβ =
∂fβ

∂xα
ξα. (1.18)

For a real-valued function f : M → R, the push-forward map f∗ is a real-valued linear function

ξα → η =
∂f

∂xα
ξα. (1.19)

which is the gradient of f at x; a co-vector or one-form. So, f∗ an be identified with the differential
one-form df :

dxαp : ξα → η = ξαp . (1.20)

A Riemann metric on a manifold M is a point-dependent, positive-definite quadratic form on the
tangent vectors at each point, depending smoothly on the local coordinates. A pseudo-Riemann
metric requires the quadratic form to be non-degenerate (non-zero determinant).

At each point x = (x1p, ..., x
m
p ) of each chart Up, the metric is given by a symmetric matrix (g

(p)
αβ (x1p, ..., x

m
p ))

and determines a symmetric scalar product of pairs of tangent vectors at x:

〈ξ, η〉 = g
(p)
αβ ξ

α
p η

β
p = 〈η, ξ〉, 〈ξ, ξ〉 = |ξ|2. (1.21)

Since the scalar product is a scalar, it is coordinate independent. The coefficients g
(p)
αβ transform as

g
(q)
γδ =

∂xαp
∂xγq

∂xβp
∂xδq

g
(p)
αβ . (1.22)

We can rewrite this in terms of basis one-forms in a coordinate-independent way as

ds2 = g
(p)
αβdx

α
p dx

β
p = g

(q)
αβdx

α
q dx

β
q . (1.23)

ds is the line element and is used to measure distances between two infinitesimally close points.

A tensor of type (k, l) and rank k + l on a manifold M of dimm is given in a local coordinate
system (xip) by a family of functions (p)T i1...ikj1...jl

(x). In another coordinate system, the components are

(q)T s1...skt1...tl
=
∂xs1q

∂xi1p
. . .

∂xskq

∂xikp
·
∂xj1p

∂xt1q
. . .

∂xjlp

∂xtlq
·(p)T i1...ikj1...jl

. (1.24)

This is the transformation rule for tensors of type (k, l). See Slides_Diff_Geom-p1.pdf, pp. 56-66
for examples.
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2 Lie Groups and Lie Algebras

2.1 Lie Groups

A manifold G is called a Lie group if it has given on it a group operation with the property that the
maps

ϕ : G→ G, ϕ(g) = g−1 (the inverse),

ψ : G×G→ G, ψ(g, h) = gh (group multiplication)
(2.1)

are smooth maps.

Let G be a Lie group, with the point g0 = 1 the identity element of G and T = T(1) the tangent
space at the identity. We can express the group operations on G in a chart U0 containing g0 in terms
of local coordinates.

We choose coordinates in U0 so that g0 = (0, ..., 0) is the origin. We let

g1 = (x1, ..., xn), g2 = (y1, ..., yn), g3 = (z1, ..., zn) (2.2)

such that gσk g
σ′

k′ ∈ U0 for all combinations k, k′ = 1, 2, 3 and σ, σ′ = −1, 1, where +1 is the element
itself, and −1 is the inverse of the element. Then we have the coordinates

g1g2 =
(
ψ1(x, y), ..., ψn(x, y)

)
=
(
ψi(x, y)

)
, ψi(x, y) = ψi(x1, ..., xn, y1, ..., yn) (2.3)

g−11 =
(
ϕ1(x), ..., ϕn(x)

)
=
(
ϕi(x)

)
, ϕi(x) = ϕi(x1, ..., xn). (2.4)

Here, ψ(x, y) and ϕ(x) satisfy, for all i = 1, ..., n:

1. ψi(x, 0) = ψi(0, x) = xi (multiplication by the identity),

2. ψi(x, ϕ(x)) = 0 (multiplication of an element and its inverse is the identity),

3. ψi(x, ψ(y, z)) = ψi(ψ(x, y), z) (associativity).

We can find an expression for ψ(x, y) in a neighbourhood around the identity by Taylor expanding.
We find that

ψi(x, y) = xi + yi + bijkx
jyk +O

(
{x, y, z}3

)
, bijk =

∂2ψi

∂xj∂yk

∣∣∣∣
x=y=0

. (2.5)

Let ξ, η ∈ T , the tangent space of the identity, and let their components in terms of xi be ξi, ηi. The
commutator [ξ, η] ∈ T is defined by

[ξ, η]i = cijkξ
jηk, cijk := bijk − bikj . (2.6)

It has the properties

1. [, ] is a bilinear operation on the n-dim vector space T ,

2. it is skew-symmetric: [ξ, η] = −[η, ξ],

3. it satisfies Jacobi’s Identity: [[ξ, η], ζ] + [[ζ, ξ], η] + [[η, ζ], ξ] = 0.

The proof is long and arduous algebra, and can be found in Slides_Diff_Geom-p3.pdf, pp. 8-11.

A Lie algebra is a vector space G over a field F with a bilinear operation [·, ·] : G × G → G called a
commutator, or Lie bracket. It satisfies the following axioms:

1. ∀x, y ∈ G, [x, x] = 0 and [x, y] = −[y, x] (skew-symmetry),

7



2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Thus, the tangent space T = Tg0 at the identity of the Lie group G, along with the commutator
operation, is a Lie algebra called the Lie algebra of the Lie group G.

Let ei =
∂

∂xi
, i = 1, ...n be the standard basis vectors of T . Then, we have

[ξ, η] = [ξ, η]iei = cijkξ
jηkei. (2.7)

Choosing ξ = ej , η = ek and noting that (em)n = δnm, we get

[ej , ek] = cijkei. (2.8)

The skew-symmetric constants cijk = −cikj which determine the commutation operation of the Lie
algebra are called the structure constants of the Lie algebra.

2.2 One-Parameter Subgroups

A one-parameter subgroup of a Lie group G is a curve F (t), parametrised by t ∈ R, on the manifold
G such that

F (0) = 1, F (t1 + t2) = F (t1)F (t2), F (−t) = F (t)−1 (2.9)

The velocity vector at F (t) is

dF

dt
=
dF (t+ ε)

dε

∣∣∣∣
ε=0

=
d

dε
[F (t)F (ε)]

∣∣∣∣
ε=0

= F (t)
dF (ε)

dε

∣∣∣∣
ε=0

(2.10)

Hence we have the identities

Ḟ (t) = F (t)Ḟ (0), F (t)−1Ḟ (t) = Ḟ (0) (2.11)

The action of left multiplication by F (t)−1 sends Ḟ (t) to Ḟ (0) = const ∈ T .

F (t) can be thought of as a “time evolution” operation, taking the velocity vector Ḟ (t0) at some
time t0 to a future time t1 > t0 by the action

Ḟ (t1) = F (t1 − t0)Ḟ (t0) = F (t1)F (−t0)Ḟ (t0) = F (t1)F (t0)−1Ḟ (t0) = F (t1)Ḟ (0). (2.12)

Similarly, F (t)−1 = F (−t) can be thought of as a time evolution backwards in time.

Just as we have F (t)−1Ḟ (t) = Ḟ (0), we in fact have a unique F (t) such that

F (t)−1Ḟ (t) = A, ∀A ∈ T. (2.13)

If G is a matrix group§ then we have the so-called exponential map

F (t) = expAt (2.14)

Suppose F (t) ∈ U0 (the chart containing the identity) has local coordinates f i(t), i = 1, ..., n. Since
F (t) is a one-parameter subgroup, its coordinate functions satisfy the same properties as the subgroup:

f i(0) = 0, f i(t1 + t2) = ψi (f(t1), f(t2)) , f i(−t) = ϕi(f(t)) (2.15)

§Not all Lie groups have matrix representations, however by the Peter-Weyl Theorem every compact Lie group has
a faithful finite-dimensional representation and is therefore isomorphic to a closed subgroup of GL(n,C) for some n, i.e
a matrix group.
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where ψ and ϕ are the usual multiplication and inverse maps of the Lie algebra G of G.

If we consider left multiplication by F (t), we have

x→ y = F (t)x, yi = ψi(f(t), x), x, y ∈ G. (2.16)

The velocity vector at F (t) in terms of these coordinates is

dF

dt
=
(
ḟ1(t), ..., ḟn(t)

)
, ḟ i(t) =

df i(t+ ε)

dε

∣∣∣∣
ε=0

=
dψi(f(t), f(ε))

dε

∣∣∣∣
ε=0

=
∂ψi(f(t), x)

∂xj

∣∣∣∣
x=0

ḟ j(0).

(2.17)
Since F (t) is in the tangent space T , it induces a push-forward map

F∗(t) : ξi → ηi =
∂ψi(f(t), x)

∂xj
ξj , ξ ∈ TxG, η ∈ TyG. (2.18)

Thus we see that F∗(t) sends Ḟ (0) to Ḟ (t). Similarly, F∗(t)
−1 sends Ḟ (t) to Ḟ (0).

One-parameter subgroups can be used to define canonical coordinates¶ in a neighbourhood of
the identity of a Lie group G. We let A1, ..., An form a basis for the Lie algebra T . We know that for
each

A = Aix
i ∈ T (2.19)

there is a one-parameter group F (t) = expAt. We assign coordinates to the point g = F (1) = expA
which are the coefficients x1, ..., xn. This gives a system of coordinates in a sufficiently small neigh-
bourhood of g0 = 1 ∈ G. These are called the canonical coordinates of the first kind.

Of course, one might think that“first kind” implies the existence of a “second kind”, and you’d be
right. Another coordinate system can be constructed by introducing Fi(t) = expAit and representing
a point g sufficiently close to g0 by

g = F1(t1)F2(t2) · · ·Fn(tn) (2.20)

for small ti. Assigning the coordinates x1 = t1, ..., x
n = tn to the point g gives the canonical coor-

dinates of the second kind.

Note that for a point g expressed in terms of canonical coordinates of the first and second kind

g(1) = exp
(
A1x

1 +A2x
2 + ...+Anx

n
)

g(2) = exp
(
A1x

1
)

exp
(
A2x

2
)
· · · exp(Anx

n)
(2.21)

the two coordinate systems are equivalent only when eaeb = ea+b, i.e. when [Ai, Aj ] = 0.

2.3 Linear Representations

A linear representation of a group G is a group homomorphism

ρ : G→ GL(r,K) (2.22)

from G to the General Linear group of invertible r × r matrices such that

ρ(g1g2) = ρ(g1)ρ(g2) ∀g1, g2 ∈ G. (2.23)

Here, K is the field over which the matrices are defined (for our purposes, K is either R or C).

Given a representation ρ of G, the map

χρ : G→ K, χρ(g) = tr ρ(g), g ∈ G (2.24)

¶Also called Lie-Cartan coordinates
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is called the character of the representation ρ.

A representation ρ of G is irreducible if the vector space Kr contains no proper subspaces invariant
under the matrix group ρ(G) = GL(r,K). Here, a subspace W ⊂ Kr is invariant under the matrix
group ρ(G) or simply G-invariant if

ρ(g)W ⊂W ∀g ∈ G. (2.25)

We are then able to restrict ρ to W and get a subrepresentation of ρ.

Consider the representation

ρ : G→ GL(r1,K)×GL(r2,K) ⊂ GL(r1 + r2,K) (2.26)

such that

g → ρ(g) =

(
ρ1(g) 0

0 ρ2(g)

)
, ρk(g) ∈ GL(rk,K), k = 1, 2. (2.27)

The representation space is Kr = Kr1 ⊕Kr2 with elements

x =

(
u
v

)
∈ Kr,

(
u
0

)
∈ Kr1 ,

(
0
v

)
∈ Kr2 . (2.28)

We see that

ρ(g)

(
u
0

)
=

(
ρ1(g) 0

0 ρ2(g)

)(
u
0

)
=

(
ρ1(g)u

0

)
∈ Kr1 ,

ρ(g)

(
0
v

)
=

(
ρ1(g) 0

0 ρ2(g)

)(
0
v

)
=

(
0

ρ2(g)v

)
∈ Kr2 .

(2.29)

Both Kr1 and Kr2 are G-invariant under ρ. Thus, we can write

ρ(g)x = ρ(g)

(
u
v

)
= ρ(g)

(
u
0

)
+ ρ(g)

(
0
v

)
=

(
ρ1(g)u
ρ2(g)v

)
= ρ1(g)x+ ρ2(g)x. (2.30)

ρ can be decomposed into a sum of representations ρ = ρ1 + ρ2. Such a representation is called a
reducible representation.

Schur’s Lemma:
Let

ρi : G→ GL(ri,K), i = 1, 2 (2.31)

be two irreducible representations (irreps) of G. If A : Kr1 → Kr2 is a linear transformation changing
ρ1 into ρ2, i.e. A satisfies

Aρ1(g) = ρ2(g)A, ∀g ∈ G, (2.32)

then either A is the zero transformation or is a bijection, in which case r1 = r2.

If G is a Lie group and a representation ρ : G → GL(r,K) is a smooth map, then the push-forward
map ρ∗ is a linear map from the Lie algebra G = T(1) to the space of r × r matrices:

ρ∗ : G →Mrr(K). (2.33)

ρ∗ is a representation of the Lie algebra G, i.e. is a Lie algebra homomorphism:

1. it is linear

2. it preserves commutation: ρ∗[ξ, η] = [ρ∗ξ, ρ∗η].

A representation is called faithful‖ if it is one-to-one, i.e. ρ(g) 6= 1 unless g = g0. If a Lie group
has a faithful representation then it can be realised as a matrix Lie group, as mentioned in a previous
footnote.
‖Mathematical monogamy joke.
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2.4 The Adjoint Representation

An inner automorphism of a group G determined by some h ∈ G is the transformation

AD : G→ G, g → AD(g) = hgh−1, g ∈ G. (2.34)

Any inner automorphism does not move the identity g0 = hg0h
−1, and therefore the push-forward map

of the tangent space T = Tg0G is a linear transformation of T denoted by Adh : T → T , satisfying

1. Adg0 = 1, where 1 is the identity transformation of T

2. Adh1
Adh2

= Adh1h2
∀h1, h2 ∈ G, since h1h2gh

−1
2 h−11 = (h1h2)g(h1h2)−1

3. Choosing h1 = h, h2 = h−1, we get Adh−1 = Ad−1h .

The map h → Adh is a linear representation of G called the adjoint. For commutative Lie groups,
the adjoint representation is the identity; Adh = 1 ∀h ∈ G, since hgh−1 = hh−1g = g.

In a neighbourhood of U0, the push-forward map of the inner automorphism is

AD(h)∗ : ξi → ηi =
∂ψi(ψ(h, x), ϕ(h))

∂xj
ξj , ξ ∈ TgG, η ∈ Thgh−1G. (2.35)

If x = 0, then g = g0 and ξ, η ∈ Tg0G = T . The adjoint is then

Adh : ξ → η =
∂ψi(ψ(h, x), ϕ(h))

∂xj

∣∣∣∣
x=0

ξj =
∂ψi(z, ϕ(h))

∂zk

∣∣∣∣
z=h

∂ψk(h, x)

∂xj

∣∣∣∣
x=0

ξj . (2.36)

Let F (t) = expAt be a one-parameter subgroup of a Lie group G. Then AdF (t) is a one-parameter

subgroup of GL(n,R). The vector d
dt AdF (t)

∣∣
t=0

lies in the Lie algebra gl(n,R) of GL(n,R) and can
be thought of as a linear operator denoted by adA:

adA : Rn → Rn, B → [A,B], B ∈ T ∼= Rn. (2.37)

A Lie algebra G is said to be

1. simple if it is noncommutative and has no proper ideals, i.e. subspaces I ( G for which
[I,G] ⊂ I

2. semisimple if G = I1 ⊕ · · · ⊕ Ik, where Ij are simple ideals with the property [Ii, Ij ] = 0
for i 6= j.

The Killing form on a Lie algebra G is

〈A,B〉 = − tr(adAadB). (2.38)

If the Lie algebra G of a Lie group G is simple, then the linear representation Ad : G → GL(n,R) is
irreducible.

If the Killing form of G is positive definite, then the Lie algebra is semisimple.
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3 Lie Derivatives and Covariant Differentiation

3.1 Vector and Tensor Fields

A vector field is a map that specifies a unique vector at each point x of a manifold M

ξ : M → T (M), x→ ξx ∈ TxM. (3.1)

A vector field intersects each tangent space Tx of the tangent bundle T (M) at one and only one point.

In a coordinate basis (xip), we can write

ξ = ξip(x)
∂

∂xip
, x ∈ Up. (3.2)

Since there is a unique vector at each point, we can drop the subscript p:

ξ = ξi(x)
∂

∂xi
, x ∈M. (3.3)

A vector field ξ can be understood as a differential operator that maps a scalar function to a scalar
function on M

ξ(f) = ξi
∂f

∂xi
. (3.4)

This allows ξ to act as map from M to R:

ξ(f) : M → R, x→ ξi(x)
∂f(x)

∂xi
. (3.5)

Vector fields are linear and satisfy the Leibniz rule:

ξ(fg) = ξ(f)g + fξ(g). (3.6)

A tensor field of type (r, s) assigns a unique tensor of type (r, s) to each point x ∈M .

(r,s)ξ : M → T (r,s)(M), x→(r,s) ξx ∈ T (r,s)
x M. (3.7)

What happens if we compose vector fields? Consider the composition

ξ(η(f)) = ξi
∂

∂xi

(
ηj
∂f

∂xj

)
= ξi

∂ηj

∂xi
∂f

∂xj
+ ξiηj

∂2f

∂xi∂xj
. (3.8)

Because of the second term, the composition is not a vector field. Instead, we can define the Lie
bracket, or commutator

[ξ, η]f := ξ(η(f))− η(ξ(f)) =

(
ξi
∂ηj

∂xi
− ηi ∂ξ

j

∂xi

)
∂f

∂xj
(3.9)

which is a vector field with components

[ξ, η]j = ξi
∂ηj

∂xi
− ηi ∂ξ

j

∂xi
. (3.10)

The Lie bracket has the properties

1. skew-symmetry: [ξ, η] = −[η, ξ]

2. linearity: [ξ, η + ζ] = [ξ, η] + [ξ, ζ]

3. [ξ, fη] = f [ξ, η] + ξ(f)η

4. Jacobi’s identity: [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0.

Thus, a vector space of vector fields equipped with the commutator is an infinite dimensional Lie
algebra.
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3.2 Integral Curves

Let ξi(x) be a vector field on M . Consider the autonomous (no explicit t dependence) system of
differential equations

ẋi(t) :=
dxi

dt
= ξi(x1(t), ..., xn(t)), i = 1, ..., n. (3.11)

The solutions xi = xi(t) to this system are called the integral curves of the vector field ξi and the
vector field ξi itself is comprised of tangent vectors to the integral curves.

We can denote the integral curve of ξi by

F it (x
1
0, ..., x

n
0 ) = xi = xi(t, x10, ..., x

n
0 ), xi

∣∣
t=t0

= xi0. (3.12)

Choosing t0 = 0 with x0 := x10, ..., x
n
0 , the formula F it (x0) = xi defines a self-map

Ft : (x0)→ (x1(t, x0), ..., xn(t, x0)) (3.13)

which depends on the parameter t.

In mechanics speak, Ft applied to the position x0 ∈ M is the time-evolution operator which gives
the new position of a particle after time t as the particle moves along the integral curve through x0.

Given a point x0 ∈M with (ξi) 6= 0, the map Ft is locally a diffeomorphism, i.e. satisfies

Ft+s = Ft ◦ Fs = Fs ◦ Ft, F−t = F−1t . (3.14)

The diffeomorphisms Ft define a local group. Needless to say, Ft is a one-parameter group.

This local abelian one-parameter group of diffeomorphisms Ft is called the flow generated by ξi.
For small t, we can Taylor expand to find the solution

xi(t, x0) = xi0 + tξi(x0) +
1

2
t2
∂ξi

∂xj
ξj(x0) +O(t3). (3.15)

For some one-parameter local group of diffeomorphisms Ft = (F 1
t , ..., F

n
t ), we can define its velocity

field to be the vector field

ξi =
d

dt
F it

∣∣∣∣
t=0

, i = 1, ..., n. (3.16)

The commutator [ξ, η] can be interpreted geometrically as the measure of the discrepancy between
the points arrived at by following the integral curves ξ and η (with flows Ft and Gs, respectively) in
different orders. For small t and s, we have (after arduous calculation)

[Gs, Ft](x) = Gs(Ft(x))− Ft(Gs(x)) = ts[ξ, η] +O(t3, s3). (3.17)

If the Lie bracket of two vector fields vanishes, the vector fields commute. Note that vectors com-
prising a coordinate induced basis commute because partial derivatives commute. The converse is also
true; if all the elements of a basis for vector fields commute then the basis is coordinate induced.

A one-parameter group of diffeomorphisms Ft(x) with vector field ξ(x) acts on smooth functions
f = f(x) as

(Ftf)(x) = f(Ft(x)). (3.18)

e.g. the one-parameter group of translations Ft(x) = x+ t with ξ = 1 acts as

Ftf(x) = f(x+ t). (3.19)
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For a general analytic function f(x), we have

Ftf(x) = f(x+ t) = f(x) + tf ′(x) +
1

2
t2f ′′(x) + ...

=

( ∞∑
k=0

tk

k!

dk

dtk

)
f(x) := exp

(
t
d

dt

)
f(x) = et∂ξf(x).

(3.20)

Here, exp(t∂ξ) is the exponential function of ξ. ∂ξ = ξi
∂

∂xi
is the directional derivative in the

direction of ξ.

WE can use this to define an action of the flow Ft generated by the vector field ξ on a tensor T = (T
(i)
(j))

of type (p, q) where (i) = i1, · · · ip, (j) = j1 · · · jq. We consider a region on which Ft are one-to-one

ẋi = ξi(x) =⇒ yi(t) = F it (x), yi(0) = xi. (3.21)

Since x and y are different points on the manifold, we cannot compare them. Instead, we perform a
passive transformation of the basis vectors by F−1t . This moves the point y = Ft(x) to the point x.
We then define the action of Ft(x) on T by

(FtT )
(i)
(j)(x) = T

(k)
(l) (y)

∂yl1

∂xj1
· · · ∂y

lq

∂xjq
∂xi1

∂yk1
· · · ∂x

ip

∂ykp
. (3.22)

We see that FtT (x) and T (y) are simply the same tensor measured in different coordinate systems.

We can now define the Lie derivative of a tensor T = (T
(i)
(j)) along a vector field ξ as the tensor

LξT given by

LξT
(i)
(j) =

d

dt
(FtT )

(i)
(j)

∣∣∣∣
t=0

. (3.23)

If we regard Ft as a time-dependent deformation of the manifold, then the Lie derivative measures the
rate of change of the tensor T resulting from this deformation.

The explicit formula for the Lie derivative is

LξT
(i)
(j) = ξα

∂T
(i)
(j)

∂xα
+ T

i1···ip
αj2···jq

∂ξα

∂xj1
+ ...+ T

i1···ip
j1···jq−1α

∂ξα

∂xjq

− Tαi2···ipj1···jq
∂ξi1

∂xα
− ...− T i1···ip−1α

j1···jq
∂ξip

∂xα
.

(3.24)

If T = f is a scalar, then the Lie derivative is the directional derivative:

Lξf = ξα
∂f

∂xα
= ∂ξf. (3.25)

If Lξf = 0, then f is constant along the integral curves of ξ and f is called an integral of the field.
e.g. for ξ = (−y, x) the functions f(x, y) = x2 + y2 − c are integral.

If T = η is a vector field, the Lie derivative is

Lξη
i = ξα

∂ηi

∂xα
− ηα ∂ξ

i

∂xα
= [ξ, η]i (3.26)

and has the properties

1. Lξη = −Lηξ

14



2. Lξ(fη) = fLξη + η∂ξf

3. L[ξ,η]f = ∂[ξ,η] = [∂ξ, ∂η]f = [Lξ, Lη]f .

If T = (Ti) is a covector, then the Lie derivative is

LξTi = ξα
∂Ti
∂xα

+ Tα
∂ξα

∂xi
. (3.27)

In particular, if Ti =
∂f

∂xi
:= dfi, then

Lξdfi = ξα
∂2f

∂xα∂xi
+

∂f

∂xα

∂ξα

∂xi
=

∂

∂xi

(
ξα

∂f

∂xα

)
=

∂

∂xi
(Lξf). (3.28)

So, Lξ and d commute; Lξdf = d(Lξf).

If T = (gij) is a tensor of type (0, 2), then

Lξgij = ξα
∂gij
∂xα

+ gαj
∂ξα

∂xi
+ giα

∂ξα

∂xj
:= uij , (3.29)

where uij is called the strain tensor. If gij is a metric tensor of M then uij describes hoe gij changes
under small deformations Ft defined by ξ.

If the space is Euclidean, then gij = δij and

uij =
∂ξi

∂xi
+
∂ξj

∂xj
(3.30)

If Lξgij = 0, then ξ is called a Killing vector. The metric gij does not change under deformations
Ft defined by the Killing vector field ξ.

In a coordinate system (yi) where a Killing vector field ξ = (1, 0, ..., 0), then the metric gij is in-
dependent of y1.

If ξ and η are Killing vectors, then their commutator is also a Killing vector:

L[ξ,η]gij = [Lξ, Lη]gij = 0. (3.31)

So, the Killing vector fields of a pseudo-Riemannian manifold form a Lie algebra with respect to the
Lie bracket.

If T =
√
|g|εi1···in is the volume element, then

Lξ
√
|g|εi1···in = εi1···in

∂

∂xα

[√
|g|ξα

]
. (3.32)

The volume of an oriented, closed manifold does not change under small deformations Ft defined by ξ.

The quantity

∇αξα :=
1√
|g|

∂

∂xα

[√
|g|ξα

]
(3.33)

is a scalar called the divergence of the vector field ξ. Note that

∇αξα =
1

2
gijuij =

1

2
gijLξgij . (3.34)

15



3.3 Covariant Differentiation

The differential d transforms a skew-symmetric tensor T into another skew-symmetric tensor dT . e.g.

(dT )ij =
∂Tj
∂xi
− ∂Ti
∂xj

= ∂iTj − ∂jTi. (3.35)

It is important that this quantity dT is a tensor, because ∂jTi alone is not a tensor. We can see this
by changing coordinates.

∂qT̃j =
∂T̃j
∂zq

=
∂

∂zq

(
Ti
∂xi

∂zj

)
=
∂Ti
∂zq

∂xi

∂zj
+ Ti

∂2xi

∂zq∂zj

=
∂Ti
∂xp

∂xp

∂zq
∂xi

∂zj
+ Ti

∂2xi

∂zq∂zj
.

(3.36)

The first term is the usual tensor transformation rule, however the second term being non-zero means
that this quantity is not a tensor. What we would like is a tensorial version of the partial derivative.
We can do this by introducing an operator ∇k - the covariant derivative - such that in Euclidean
coordinates

∇kT (i)
(j) =

∂T
(i)
(j)

∂xk
. (3.37)

For this to be a tensor, we impose that it must transform like a tensor. i.e.,

∇rT̃ (k)
(l) = ∇sT (i)

(j)

∂xs

∂zr
∂x(j)

∂z(l)
∂z(k)

∂x(i)
. (3.38)

We can also write this operator using semicolon notation: ∇kT ij := T ij;k.

Consider the vector T i. Using T̃ k = T i
∂zk

∂xi
and T i = T̃ k

∂xi

∂zk
, we have

∇rT̃ k = ∂sT
i ∂x

s

∂zr
∂zk

∂xi

=
∂T i

∂xs
∂xs

∂zr
∂zk

∂xi

=
∂T i

∂zr
∂zk

∂xi

=
∂

∂zr

(
T i
∂zk

∂xi

)
− T i ∂

∂zr
∂zk

∂xi

=
∂T̃ k

∂zr
− T̃ s ∂x

i

∂zs
∂xm

∂zr
∂2zk

∂xm∂xi

(3.39)

Introducing the connection coefficients

Γksr = −∂x
i

∂zs
∂xm

∂zr
∂2zk

∂xm∂xi
, (3.40)

we have the equation for the covariant derivative of a vector;

∇rT̃ k =
∂T̃ k

∂zr
+ ΓksrT̃

s. (3.41)

The formula for a covector is pretty much the same, just with a minus sign on Γ:

∇rT̃k =
∂T̃k
∂zr
− ΓskrT̃s. (3.42)
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For an arbitrary rank tensor, the process is is simply to add a set of connection coefficients for each
upper index and subtract one for each lower index. i.e. for a (p, q) tensor

∇rT (k)
(l) =

∂T
(k)
(l)

∂zr
+

p∑
α=1

Γkαsr T
k1···(kα=s)···kp
l1···lq −

q∑
α=1

ΓslαrT
k1···kp
l1···(lα=s)···lq . (3.43)

A connection is called affine or Euclidean if there exists a coordinate system where Γkij = 0. Such
coordinates are also called affine.

Note that these connection coefficients are not tensors. Their purpose is to facilitate covariant differ-
entiation being a tensor, as a correcting term. However, the quantity

T ijk = Γijk − Γikj = Γi[jk] (3.44)

is a tensor, called the torsion tensor. A connection is torsion-free or symmetric if

T ijk = 0 ⇐⇒ Γijk = Γikj . (3.45)

Covariant differentiation has some important properties:

1. It is linear and commutes with contraction of indices.

2. The covariant derivative of a product is computed using the Leibnitz product rule:

∇k(T
(i)
(p)S

(j)
(q)) = (∇kT (i)

(p))S
(j)
(q) + T

(i)
(p)(∇kS

(j)
(q)). (3.46)

3. The covariant derivative of the basis vectors and basis covectors can be thought of as defining
the connection coefficents:

∇kei = Γjikej , ∇kei = −Γijke
j . (3.47)
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4 Parallel Transport and Geodesics

4.1 Parallel Transport of Tensor Fields

The directional derivative of a (p, q) tensor T = (T
(i)
(j)) at the point P ∈ M along the vector

ξ ∈ TPM is the (p, q) tensor

∇ξT (i)
(j) = ξk∇kT (i)

(j) . (4.1)

For a scalar f , this definition coincides with the usual definition of the directional derivative of a
function,

∇ξf = ξk∂kf = ∂ξf. (4.2)

Normally for a directional derivative of a scalar, we can let ξ(t) be a velocity vector of a curve C, i.e.

xi = xi(t), ξi(t) =
dxi

dt
, i = 1, ..., n. (4.3)

If we have ∂ξf = 0 for all points on C, then we say the function f is constant on C.

A reasonable question to ask might be whether we can say that two different vectors or tensors at
different points are parallel to one another. In flat space this is trivial; we move one vector over to the
other and see of they point in the same direction.
If space is curved, however, this is not so simple. In general, there is no unique way to move a vector
or tensor from one point to another, and no one way is better than any other.
This is a big problem, and has no solution. We must simply give up the comfortable idea of comparing
vectors in curved space unless they are both in the same tangent space.
This has some real-world implications. For example, in curved space there is no definite notion of
relative velocity - the concept is meaningless since we can’t compare the two velocity vectors. In
cosmology, the gravitational redshift experienced by galaxies and other objects seems like the regular
Doppler shift; the equations are even of the same form. However, ascribing this frequency shift to
relative motion makes no sense. In some cases it even leads to galaxies receding from one another at
faster than the speed of light, which is of course nonsense. Locally, neither object is actually moving
that fast. Anyway, back to the maths.

We can use our covariant derivative to define constancy along a curve. We say that a tensor field
T is covariantly constant or parallel along a curve C if

∇ξT = ξk∇kT = 0, ξk =
dxk

dt
, a ≤ t ≤ b. (4.4)

In the case of a vector field, we have

∇ξT i = ξk∇kT i =
dxk

dt

(
∂T i

∂xk
+ ΓijkT

j

)
=
dT i(x(t))

dt
+
dxk

dt
ΓijkT

j = 0. (4.5)

Equation (4.5) is called the equation of parallel transport. This definition of parallelism is co-
ordinate independent because covariant differentiation is a tensor operation. Note as well that it is
dependent on the given connection.

In general, since parallelism depends on the curve C, there is no guarantee that a tensor will be
constant along another, different curve. However, if the connection is affine, Γijk = 0, then we can have
tensors which are covariantly constant and non-zero everywhere on a chart U .
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4.2 Geodesics

Geodesics are a curved-space generalisation of the notion of “straight lines”. There’s many ways of
defining what we mean by a straight line, the most common perhaps being that it’s the shortest path
between two points. Of course, this doesn’t work well for us because we’re working with individual
points and it’s tricky to compare them. A more practical definition is that a straight line parallel
transports its own tangent vector. That is, the vector tangent to a straight line is constant; it doesn’t
“change direction”. Let’s see what this looks like.

For a curve xi = xi(t) parametrised by t, its tangent vector is ẋi(t) =
dxi

dt
. The curve xi(t) is

called a geodesic if
∇ẋ(ẋ) = 0. (4.6)

Explicitly, we get

∇ẋ(ẋ) =
dxk

dt
∇k

dxi

dt
=

d

dt

dxi

dt
+
dxk

dt
Γijk

dxj

dt
= 0, (4.7)

so geodesic curves satisfy the system of n second order differential equations

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0, i = 1, ..., n. (4.8)

This is called the geodesic equation and has a unique solution for given initial conditions xi(0) = xi0
and ẋi(0) = vi0.

We can see immediately that if we’re in an affine - or Euclidean - space, where Γijk = 0, then the
geodesic equation is just

d2xi

dt2
= 0, (4.9)

which has solutions xi(t) = vi0t+ xi0, the equation of a straight line that we all know and love.

It’s worth noting that there is not always a single geodesic. For example, two points on the equa-
tor of a sphere S2 has two geodesics - the shorter path along the equator and the longer path going
around the equator the other way.

4.3 Metric-Compatibility and the Connection

An important property of parallel transport arises when our manifold has a metric structure on it.
Namely, if the covariant derivative is metric-compatible, i.e. ∇kgij = 0, and two vector fields T i

and Sj are both parallel along the curve, then parallel transport preserves their inner product:

d

dt
〈T, S〉 =

d

dt

[
gijT

iSj
]

=
dxk

dt
∇k(gijT

iSj) = gij
dxk

dt
∇k(T iSj) = 0. (4.10)

This is an important property of parallel transport. It means that it preserves vector norms (it doesn’t
randomly alter the lengths of vectors) and it’s also an orthogonal transformation (the angle between
two vectors in the tangent space is fixed under parallel transport).

The geodesic equation we have above is very nice and exists perfectly well on its own, but we would
like to be able to connect it to the other structures we have defined on our manifold. Specifically, when
the manifold has a metric defined on it.

We can define a unique connection on a manifold with metric gij by imposing two conditions:

1. The connection is torsion-free: Γkij = Γkji

2. The covariant derivative with respect to Γkij is metric-compatible: ∇kgij = 0.
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These conditions give a unique form of the connection, called the Christoffel connection∗∗, whose
components

Γkij =
1

2
gkl (∂iglj + ∂kgil − ∂lgij) (4.11)

are called the Christoffel components or Christoffel symbols. It’s important to note that this
connection is unique and always exists where we can define a metric.

4.4 The Curvature Tensor

As we have seen, parallel transport of a vector ξ is determined by the equation of parallel transport.
If Γijk = 0, this equation is trivial to solve, so it would be nice to have a way to find out if these con-
nection coefficients are zero. i.e. which manifolds are flat. What we need, then, is a way to measure
the curvature of a manifold.

If Γijk = 0, then we know the covariant derivative coincides with the partial derivative;

∇kT (i)
(j) = ∂kT

(i)
(j) . (4.12)

Since partial derivatives commute, if the connection coefficients are zero we have

[∇k,∇l] = (nablak∇l −∇l∇k)T
(i)
(j) = 0. (4.13)

In this case however, the left hand side of this equation is a tensor, so it must be true in any coordinate
system. This means that if we have an arbitrary connection, if [∇k,∇l] with respect to that connection
is zero, the connection is Euclidean. We can expand this equation explicitly to find

[∇k,∇l]ξi = (∂kΓijl − ∂lΓijk + ΓmjlΓ
i
mk − ΓmjkΓiml)ξ

j + (Γjkl − Γjlk)∇jξi (4.14)

The first quantity on the right hand side is given the notation

Rijkl = ∂kΓijl − ∂lΓijk + ΓmjlΓ
i
mk − ΓmjkΓiml (4.15)

and is called the Riemann curvature tensor. The other term is the familiar torsion tensor, T jkl.
This gives us the Ricci identity

[∇k,∇l]ξi = Rijklξ
j + T jkl∇jξ

i. (4.16)

For a symmetric, torsion-free connection, if the Riemann curvature tensor is identically zero then the
connection is Euclidean.

The curvature tensor has some important symmetries which can be derived from its explicit form.

1. It is skew-symmetric in its last two indices: Rijkl +Rijlk = 0.

2. If the connection is symmetric, then Rijkl +Riklj +Riljk = 0.

3. If the connection is metric-compatible and we define the purely covariant curvature tensor

Rijkl = gimR
m
jkl, (4.17)

then Rijkl is skew-symmetric in the first two indices: Rijkl +Rjikl = 0.

4. If the connection is symmetric and metric-compatible, then Rijkl is symmetric under exchange
of the first two indices with the last two: Rijkl = Rklij .

∗∗This connection goes by many names, including but not limited to the Christoffel connection, the Levi-Civita
connection, and the Riemannian connection.

20



4.5 Normal Coordinates

A useful form of the metric is the canonical form

gij = diag(−1,−1, ...,−1,+1,+1, ...,+1, 0, ..., 0). (4.18)

If the manifold has dimension n and the canonical form has t (−1)’s and s (+1)’s, then s − t is the
metric signature and s + t is the metric rank. If the metric is continuous, it has the same rank
everywhere. If the rank is equal to the dimension of the manifold, it is non-degenerate.

It is always possible to put the metric into its canonical form at a single point P ∈ M , but not
necessarily in a neighbourhood of P and certainly not over the whole manifold (unless the manifold is
flat). At any point P , there exists a coordinate system such that gij takes its canonical form and the
derivatives ∂kgij are all zero. These coordinates are called Riemann normal coordinates (RNCs),
and the basis vectors of this coordinate system form a local Lorentz frame. This is a formal state-
ment of the idea behind manifolds, that they “look locally like flat space” up to first order. Note that
in RNCs, the second derivatives ∂l∂kgij do not usually vanish.

Of course, since the connection is made up of the metric and its first derivatives, Γkij = 0 at the
point P .

4.6 Contractions of the Curvature Tensor

Our curvature tensor Rijkl has built into it the information about the curvature of its manifold with
respect to some connection. We discussed some of the symmetries of this tensor, each of which reduces
its number of independent components. Cutting to the chase, the number of independent components
in n dimensions is

1

12
n2(n2 − 1). (4.19)

In 1, 2, 3, and 4 dimensions, there are 0, 1, 6, and 20 independent components. There are some impor-
tant takeaways to this. Firstly, the 20 independent functions in four dimensions correspond exactly to
the 20 degrees of freedom in the second derivatives of the metric which we could not set to zero in RNCs.

Secondly, notice that in 1 dimension there are no independent components of the curvature tensor.
One dimensional manifolds such as S1 - the circle - are always flat. We think of a circle as having
curvature because it is embedded in 2d space. This is called extrinsic curvature.

Now, sometimes it is useful to consider other tensors built from the curvature tensor. For the Christoffel
connection, there is one independent contraction of Rijkl called the Ricci tensor, formed by contract-
ing the upper index with the second lower index

Rij = Rkikj . (4.20)

If we have the metric, we can contract this tensor again to get the Ricci scalar, or scalar curvature

R = Rkk = gjkRjk. (4.21)

In n = 2 dimensions, where the curvature tensor has only one independent component, the Ricci scalar
contains all the information about the curvature of the space.

We can construct an important tensor from the Ricci tensor and scalar curvature. Using the Bianchi
identity (without proof)

∇[mRij]kl = 0, (4.22)

and contracting twice, we find that

∇kRjk =
1

2
∇jR. (4.23)
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This means that if we construct the Einstein tensor

Gij = Rij −
1

2
Rgij , (4.24)

we have
∇iGij = 0. (4.25)

The Einstein tensor appears in the Einstein field equations

Gij + Λgij =
8πG

c4
Tij (4.26)

where Λ is the cosmological constant, G is Newton’s gravitational constant, and Tij is the stress-energy
or energy-momentum tensor. This equation was Einstein’s 1915 masterpiece; the left hand side encap-
sulates the curvature of spacetime through the metric, and the right hand side describes the matter
and energy distribution of space. i.e. matter and energy curve spacetime.

The Ricci tensor and scalar curvature tell us about the traces of the Riemann curvature tensor. Of
course, there is other information in there too. We can construct the Weyl tensor, which is the
curvature tensor with all of its contractions subtracted off.

Cijkl = Rijkl −
2

n− 2

(
gi[kRl]j − gj[kRl]i

)
+

2

(n− 2)(n− 1)
gi[kgl]jR. (4.27)

The Weyl tensor is sometimes called the conformal tensor because it is invariant under conformal
transformations

gij → λ(x)gij , λ(x) ∈ C∞(M). (4.28)
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5 Appendix

This appendix contains some extra information primarily based on discussions from Sean Carroll’s
Lecture Notes on General Relativity, which I have already mentioned.

5.1 The Parallel Propagator

We have seen already the equation of parallel transport

dT i(x(t))

dt
+
dxk

dt
ΓijkT

j = 0. (5.1)

We can, in fact, find an explicit, general solution to this equation. For some path x(t), solving the
equation of parallel transport amounts to finding an operator P (t, t0) which takes a vector T i(t0) from
an initial point at t0 to a final value t further along the path, given by

T i(t) = P ij (t, t0)T j(t0). (5.2)

The matrix operator P ij (t, t0) is called the parallel propagator. If we define Aik(t) = −Γijk
dxj

dt
, then

the equation for parallel transport becomes

dT i

dt
= AikT

k. (5.3)

Substituting in for (5.2), using the product rule, we get

d

dt
P ik(t, t0) = Aij(t)P

j
k (t, t0). (5.4)

We can solve this equation by integrating both sides;

P ik(t, t0) = δik +

∫ t

t0

Aij(t
′)P jk (t′, t0)dt′. (5.5)

Now, taking this equation and plugging it into itself, we get

P ik(t, t0) = δik +

∫ t

t0

Aik(t′)dt′ +

∫ t

t0

∫ t′

t0

Aij(t
′)Ajk(t′′)dt′′dt′ + ... (5.6)

The nth term in this sequence is an integral over an n-dimensional right triangle, called an n-simplex.
Instead of integrating over a simplex, we can integrate over a hypercube, which contains n! simplexes,

so we multiply the nth integral by
1

n!
. We also need the integrand A(tn)A(tn−1) · · ·A(t1) to be ordered

such that tn ≥ tn−1 ≥ · · · ≥ t1. We do this by introducing the path ordering operator P. Our
general term is then

1

n!

∫ t

t0

· · ·
∫ t

t0

P [A(tn)A(tn−1) · · ·A(t1)] dnt. (5.7)

We can now write our parallel propagator as

P (t, t0) = 1 +

∞∑
n=1

1

n!

∫ t

t0

P [A(tn)A(tn−1) · · ·A(t1)] dnt. (5.8)

This is the series expansion of an exponential, so we can say that the parallel propagator is given by
the path-ordered exponential

P (t, t0) = P exp

(∫ t

t0

A(t)dt

)
P ij (t, t0) = P exp

(
−
∫ t

t0

Γikj
dxk

dt
dt

)
.

(5.9)
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This same kind of expression appears in quantum perturbation theory as Dyson’s formula, because
the Schrödinger equation has the same form as equation (5.4).

For a metric-compatible connection, if the path followed is a loop, starting and ending at the same
point, then the parallel propagator is just a Lorentz transformation of the tangent space. The transfor-
mation is called the holonomy of the loop. Knowing the holonomy of all possible loops is equivalent
to knowing the metric, which led to research into describing general relativity in terms of these loops;
Loop Quantum Gravity.

5.2 Geodesics and the Christoffel Connection

In a Lorentzian spacetime, which has a pseudo-Riemann metric gij , we have three different types of
path; space-like, time-like, and light-like (or null), each with different path lengths described by the
metric as

ds2 = gijdx
idxj (5.10)

For space-like paths, ds2 > 0, for time-like paths ds2 < 0, and for null paths ds2 = 0. A useful
parametrisation for time-like paths is the proper time τ , which can be thought of as the total time
measured by a clock moving along the curve.

τ =

∫ √
−gij

dxi

dt

dxj

dt
dt (5.11)

One of our definitions for straight lines was that they are the shortest distance between two points.
This corresponds to finding the extrema of the proper time (spoiler alert: the shortest paths will be
the maxima of the proper time).

We perform calculus of variations on τ in order to find the extrema. We thus consider an infinitesimal
change

xi → xi + δxi

gij → gij + δxk∂kgij
(5.12)

The change in the metric comes from considering its Taylor expansion. Putting this into our τ equation,
we get

τ + δτ =

∫ (
−gij

dxi

dt

dxj

dt
− ∂kgij

dxi

dt

dxj

dt
δxk − 2gij

dxi

dt

d(δxj)

dt

)1/2

dt

=

∫ (
−gij

dxi

dt

dxj

dt

)1/2
[

1 +

(
−gij

dxi

dt

dxj

dt

)−1
×

×
(
−∂kgij

dxi

dt

dxj

dt
δxk − 2gij

dxi

dt

d(δxj)

dt

)]1/2
dt. (5.13)

Since δxk is small, we can expand the term in square brackets. The 0th order term cancels τ (try it)
and we get

δτ =

∫ (
−gij

dxi

dt

dxj

dt

)−1/2(
−1

2
∂kgij

dxi

dt

dxj

dt
δxk − gij

dxi

dt

d(δxj)

dt

)
dt. (5.14)

We can remove the leading factor in this expression by changing the parameter of our curve x(t) from
t to the proper time itself using

dt =

(
−gij

dxi

dt

dxj

dt

)−1/2
dτ. (5.15)
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We substitute in for dt (everywhere, including in the derivative terms) and get

δτ =

∫ (
−1

2
∂kgij

dxi

dτ

dxj

dτ
δxk − gij

dxi

dτ

d(δxj)

dτ

)
dτ =

∫ (
−1

2
∂kgij

dxi

dτ

dxj

dτ
+

d

dτ

[
gik

dxi

dτ

])
δxkdτ.

(5.16)

In the second line we integrated by parts and demanding that δxk vanish at the boundary points.
Now, we can find conditions for the extrema of τ . We want δτ to vanish for arbitrary variations δxk,

so we need the integrand to be zero. Using the chain rule, we have
dgik
dτ

=
dxj

dτ
∂jgik. Thus, we require

− 1

2
∂kgij

dxi

dτ

dxj

dτ
+ ∂jgik

dxi

dτ

dxj

dτ
+ gik

d2xi

dτ2
= 0. (5.17)

Multiplying by the inverse metric glk, we get our final expression

d2xl

dτ2
+

1

2
glk (∂igjk + ∂jgki − ∂kgij)

dxi

dτ

dxj

dτ
= 0. (5.18)

This is exactly the geodesic equation but with the specific choice of the Christoffel connection

Γlij =
1

2
glk (∂igjk + ∂jgki − ∂kgij) . (5.19)

So, on a manifold the extrema of the proper time (and proper distance) are curves which parallel
transport their tangent vector with respect to the Christoffel connection; it doesn’t matter if there is
another connection defined on the manifold. This is one reason why the Christoffel connection is the
one used in General Relativity. It’s the connection under which the geodesic equation describes the
path of unaccelerated particles.

The geodesic equation can in fact be thought of as a curved space generalisation of Newton’s laws,
~f = m~a for ~f = 0. We can even introduce forces on the right hand side in a tensorial way. The
equation of motion for a particle of mass m and charge q in GR is

d2xi

dτ2
+ Γijk

dxj

dτ

dxk

dτ
=

q

m
F il

dxl

dτ
. (5.20)

As a last point, we never argued as to why the geodesics maximise the proper time. In Lorentzian
spacetime, the character of a geodesic (whether it is time-like, space-like, or null) does not change. If
we have a time-like curve, we can approximate it as a series of null curves which have proper time of
zero. Timelike geodesics cannot be curves of minimum proper time, since then they would always be
infinitesimally close to a null curve as we increase the number of jagged edges.

Figure 4:

This is how you can remember which twin in the twin paradox ages more. The one who stays on the
Earth’s geodesic experiences more proper time.

25


	Manifolds
	Lie Groups and Lie Algebras
	Lie Derivatives and Covariant Differentiation
	Parallel Transport and Geodesics
	Appendix

