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1 A Covariant Formulation of the Maxwell Equations

1.1 Lorentz Transformations

Lorentz transformations1 are the linear transformations from one spacetime coordinate system, or ref-
erence frame, S (with space and time coordinates t, x, y, z) to another reference frame S ′, such that
the two frames are moving with a constant velocity v relative to one another. Intuitively, the inverse
transformation from S ′ to S is the Lorentz transformation with velocity −v.

Similar to how reflections, rotations, and translations of the coordinate system in Euclidean space
preserve the Euclidean metric

d2 = x2 + y2 + z2 = x′2 + y′2 + z′2,

the Lorentz transformations preserve the spacetime metric,

s2 = (ct)2 − x2 − y2 − z2 = (ct′)2 − x′2 − y′2 − z′2.

A Lorentz transformation from S to S ′ such that the two sets of axes are parallel (i.e. no rotational
change) is called a Lorentz boost. A boost in the x direction by a velocity v is characterised by

t′ = γ(t− v

c2
x), x′ = γ(x− vt), y′ = y, z′ = z,

where γ =
1√

1− v2/c2
is the Lorentz factor. This can be written equivalently in terms of a dimen-

sionless velocity β =
v

c
such that γ =

1√
1− β2

, and the same boost is characterised by

ct′ = γ(ct− βx), x′ = γ(x− βct), y′ = y, z′ = z.

We can see more clearly now that the transformation rules for a boost are in terms of the components
of the spacetime metric s2. Instead of using the usual vector notation ~x = (x, y, z), which is really only
convenient in euclidean space, we can rewrite these equations in terms of four-vector notation, which
includes the time component.

1Named after Hendrik Lorentz (1853-1928). Despite being most well known for the Lorentz transformations under-
pinning Special Relativity, he won the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery of the Zeeman
effect.
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1.2 4-Vector Notation

Four-vector notation is similar to usual vector notation, except there are four components and we have
to account for the signs of terms. We can see that the spacetime metric has a minus sign on all of the
spatial terms. Relabelling the components of the spacetime metric as ct = x0, x = x1, y = x2, z = x3,
we can write the spacetime metric as

s2 = (x0)2 − (x1)2 − (x2)2 − (x3)2.

If we now define a four vector as

xµ = (ct,−~x) = (x0, x1, x2, x3),

where µ represents the components 0, 1, 2, 3, we have what’s called a “covariant” vector with the index
lowered. We could almost write the spacetime metric as a dot product of two of these covariant four-
vectors, we just need to have a minus sign on the last three terms. We can accomplish this using
what’s called the metric tensor, which is really just a fancy name for a 4× 4 matrix, defined as

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The components of this matrix are labelled gµν , where µ and ν range from 0 to 3. We see that unless
µ = ν, gµν = 0. What happens if we multiply our four-vector by this metric tensor? We get

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



x0

x1

x2

x3

 =


x0

−x1

−x2

−x3

 =


ct
x
y
z

 .

Which is just our initial four-vector with minus signs exactly where we need them! We call this a
“contravariant” four-vector, which is simply

xµ = (ct, ~x) = (x0, x1, x2, x3).

Now, we can write the spacetime metric as a product not of two four-vectors, but a four-vector and a
four-vector multiplied by the metric tensor!

x0

x1

x2

x3

 ·


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



x0

x1

x2

x3

 =


x0

x1

x2

x3

 ·

x0

−x1

−x2

−x3

 = (x0)2 − (x1)2 − (x2)2 − (x3)2.

Now, this is rather cumbersome to write out every single time, especially when so many components
are zero. Instead, we write this in terms of components of the four-vector and the metric tensor;

s2 = xµg
µνxν = xµx

µ,

where we sum over repeated indices, as we would for a usual dot product of three-vectors:

~a ·~b =

3∑
i=1

aibi = aibi.

In this case however, the dot product is over four indices, from zero, and the minus signs are included;

xµx
µ =

3∑
µ=0

xµ

3∑
ν=0

gµνxν = x0(+x0) + x1(−x1) + x2(−x2) + x3(−x3) = (x0)2 − (x1)2 − (x2)2 − (x3)2.
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We can also use this four-vector notation to rewrite our Lorentz transformation rules as

x′0 = γ(x0 − βx1), x′1 = γ(x1 − βx0)

with the other two components remaining unchanged. For a boost in an arbitrary direction, we have

x′0 = γ(x0 − ~β · ~x), ~x′ = ~x+

(
γ − 1

β2
~β · ~x− γx0

)
· ~β.

Note that Lorentz transformations are now defined as the linear transformations leaving the so-called
Minkowski product xµx

µ invariant. The components of x′µ are the transformed components of xµ

such that
x′µ = Λµνx

ν = Λµ0x
0 + Λµ1x

1 + Λ2x
2 + Λ3x

3,

where we require x′µx
′µ = xµx

µ. Thus, we have

x′µx
′µ = gµνx

′νx′µ = gµν(Λναx
α)(Λµβx

β) = xαxβΛµβΛναgµν .

Remember that this product must be invariant, so we have to have

gαβ = ΛµβgµνΛνα.

In matrix notation, this would be g = ΛT gΛ. If we take the determinant, we get

det(g) = det
(
ΛT gΛ

)
= det

(
ΛT
)

det(g) det(Λ) =⇒ 1 = det(Λ)
2
.

Thus, we must have det(Λ) = ±1. We can also find by taking the 00 component that we need |Λ0
0| ≥ 1.

The Lorentz transformations form a group represented by the 4 × 4 matrices with determinant ±1
and |Λ0

0| ≥ 1. We can define four categories of Lorentz transforms based on these two properties.
We will discuss the “proper orthochronous” Lorentz group, where the parity of the time and spatial
components are left unchanged.

1.3 The Field Strength Tensor

In vector notation, the Maxwell Equations are (in Gaussian cgs units)

~∇ · ~E = 4πρ, ~∇× ~E +
1

c

∂ ~B

∂t
= 0,

~∇ · ~B = 0, ~∇× ~B − 1

c

∂ ~E

∂t
:=

4π

c
~j.

Differentiating the first of these equations, we find

1

c

∂

∂t
~∇ · ~E =

4π

c

∂ρ

∂t
,

and taking the divergence of the last, we get

~∇ ·

(
~∇× ~B − 1

c

∂ ~E

∂t

)
=

4π

c
~∇ ·~j.

Since the divergence of a curl is zero, adding the two equations yields the continuity equation

4π

c

(
∂ρ

∂t
+ ~∇ ·~j

)
= 0.

We want to obtain a covariant formulation for these equations using four-vector notation. Noting that

~∇ ·~j =
∂

∂xk
jk, k = 1, 2, 3,
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we can now rewrite the continuity equation using the four-current-density jµ = (cρ,~j) such that

∂

∂x0
(cρ) +

∂

∂xk
jk = ∂µj

µ.

Thus, the continuity equation is simply
∂µj

µ = 0.

Note that ∂µ =

(
∂

∂x0
,−~∇

)
and ∂µ =

(
∂

∂x0
, ~∇
)

. The upper index on ∂µ corresponds to a lower

index on
∂

∂xµ
(and vice versa). This is because for a covariant position xµ, the derivative will vary

inversely, i.e. contravariantly, so the operation ∂µ will be contravariant.

If we take a look at the homogenous equations, we see that

~∇ · ~B = 0 =⇒ ~B = ~∇× ~A,

for some vector field ~A. This is the property that a divergenceless vector field can be written as the
curl of another vector field, since ~∇ · (~∇× ~A) = 0. Substituting this into the last Maxwell Equation to
be used, we find

~∇× ~E +
1

c

∂

∂t
(~∇× ~A) = 0 =⇒ ~∇×

(
~E +

1

c

∂ ~A

∂t

)
= 0.

Using yet another property of vector fields, we find that since the curl of this field is zero, we can write
it as the gradient of a scalar field

~E +
1

c

∂ ~A

∂t
= −~∇φ.

We now have the equations

~B = ~∇× ~A, ~E = −1

c

∂ ~A

∂t
− ~∇φ.

Substituting these into inhomogenous Maxwell equations, we find

~∇2φ− 1

c

∂2φ

∂t2
= −4πρ,

~∇2 ~A− 1

c

∂2 ~A

∂t2
− ~∇

(
~∇ · ~A+

1

c

∂φ

∂t

)
= −4π

c
~j.

Note that If we were to let ~A→ ~A+ ~∇ψ and φ→ φ− 1

c

∂ψ

∂t
for some scalar field ψ, then

~∇× ( ~A+ ~∇ψ) = ~∇× ~A+ ~∇× ~∇ψ = ~∇× ~A

and similarly for ~E, since the curl of the gradient of any scalar field is zero. Thus, changing ~A and φ by

these factors does not affect the physical ~E and ~B fields, however it does ensure that ~∇ · ~A+
1

c

∂φ

∂t
=,

which is called the Lorenz gauge condition2. Thus, we have the equations

2Note the name “Lorenz”, not “Lorentz”. Two different people! The Lorenz gauge is one particular choice of
Lorentz invariant gauges. It can be done because the Maxwell equations are overdetermined, so picking a gauge fixes
the redundant degrees of freedom. Other gauges are used often, one common example being the Coulomb gauge, where
~∇ · ~A = 0, which is useful for far field radiation because gives the usual Poisson equation for φ from electrostatics. This
is offset however by a rather ugly expression for the charges. Regardless of the gauge, the same results will be obtained
for the physical system.
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~∇2φ− 1

c2
∂2φ

∂t2
= −4π

c
(cρ),

~∇2 ~A− 1

c2
∂2 ~A

∂t2
= −4π

c
~j.

We already have the four-current-density jµ = (cρ,~j), so letting Aµ = (φ, ~A) be a four-potential, we
have the Maxwell equations in the form(

1

c2
∂2

∂t2
− ~∇2

)
Aµ =

4π

c
jµ.

This differential operator is known as the “d’Alembert operator”, or simply “d’Alembertian” and is
the Minkowski space equivalent of the Laplace operator. It is sometimes denoted by a box, making
the equation

�Aµ =
4π

c
jµ.

We can write the d’Alembertian in the more useful form

1

c2
∂2

∂t2
− ~∇2 =

c2

c2
∂2

∂x0∂x0
+

∂2

∂xk∂xk
= ∂µ∂

µ.

Notice that in terms of the four-potential, the Lorenz gauge condition becomes

1

c

∂φ

∂t
+ ~∇ ~A =

∂A0

∂x0
+
∂Ak

∂xk
= ∂µA

µ,

so the Lorenz gauge condition is ∂µA
µ = 0.

We can now see that with these definitions, we can compute the components of the ~E and ~B fields
easily. For example,

~E = −1

c

∂ ~A

∂t
− ~∇φ =⇒ Ex = −1

c

∂Ax
∂t
− ∂φ

∂x
= −(∂0A1 − ∂1A0)

~B = ~∇× ~A =⇒ Bz =
∂Ax
∂y
− ∂Ay

∂x
= −(∂2A1 − ∂1A2).

We define the Field Strength Tensor3 as

Fαβ = ∂αAβ − ∂βAα =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 .

This rank two tensor (read: matrix) gives us all of the components of the physical electric and magnetic
fields in terms of the derivatives of the potentials. Neat! Notice that the field strength tensor is
antiymmetric and traceless:

Fαβ = −F βα, Fαα = 0.

We can define the covariant form of the field strength tensor using the metric tensor to pull down the
indices

Fαβ = gαγgβδF
γδ.

Computing the elements of Fαβ shows that it’s equivalent to swapping only the electric field compo-
nents of Fαβ . i.e. Fαβ = Fαβ

∣∣
~E→−~E .

3Also called the electromagnetic tensor, electromagnetic field tensor, Faraday tensor, Maxwell bivector... so many
names...
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We can reclaim the inhomogenous Maxwell equations as

∂αF
αβ =

4π

c
jβ ,

and the homogenous Maxwell equations as

∂αF βγ + ∂βF γα + ∂γFαβ = 0.

We can also define the dual field strength tensor as

Gαβ =
1

2
εαβγδFγδ.

This simplifies the form of the homogenous Maxwell equations to an equivalent expression of the
inhomogenous equations

∂αF βγ + ∂βF γα + ∂γFαβ = ∂αG
αβ = 0.

The dual field strength tensor is equivalent to swapping ~E → ~B and ~B → − ~E in Fαβ . Hence, it
corresponds to “magnetic currents”, which are not observed, hence the equation is homogenous.

It can be shown by arduous computation that the field strength tensor transforms under a Lorentz
transformation as

F ′αβ = ΛαµΛβνF
µν .

This is unsurprising, as this is how all tensors transform. Indeed, mathematicians in their typical
tautological ways can define tensors as “things that transform like a tensor”.

This leads to the form of the transformed electric and magnetic fields

~E′ = γ( ~E + ~β × ~B)− γ2

1 + γ
(~β · ~E)~β,

~B′ = γ( ~B − ~β × ~E)− γ2

1 + γ
(~β · ~B)~β.

In the case of a boost in the x direction, i.e. ~β = (β, 0, 0), we have

E′1 = E1, E′2 = γ(E2 − βB3), E′3 = γ(E3 + βB2),

B′1 = B1, B′2 = γ(B2 + βE3), B′3 = γ(B3 − βE2).

1.4 Lorentz Invariants

We’ve just seen how the field strength tensor transforms under a Lorentz transformation. However,
there are some constructions which are invariant under these transformations. These are the so-called
Lorentz scalars:

FµνF
µν , GµνG

µν , FµνG
µν .

Computing these (again, arduous computation), we get

FµνF
µν = 2( ~E2 − ~B2),

GµνG
µν = −FµνFµν = −2( ~E2 − ~B2),

GµνF
µν = 4 ~B · ~E.

There are two indepenent quantities here, ~E2 − ~B2 and ~E · ~B. These are the two Lorentz invariants
for the physical fields. These have some important physical consequences:
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1. If ~E · ~B = 0, then ~E′ · ~B′ = 0 in all other reference frames. i.e. if the electric and magnetic fields
are perpendicular in one frame, they will be perpendicular in all frames.

2. If ~E2 = ~B2, then ~E′2 = ~B′2, i.e. the magnitudes of the fields are always equal, or if | ~E| ≶ | ~B|,
then | ~E′| ≶ | ~B′|.

3. If ~E · ~B = 0, then there exists a reference frame such that either ~E′ = 0 or ~B′ = 0, depending on
~E′ − ~B′ ≶ 0.

1.5 Energy and Momentum of an EM Field

The work done by an EM field on a charge current is given by

P =

∫
V

d3~x~j(~x, t) · ~E(~x, t).

Here’s a thought: why doesn’t this depend on the magnetic field?

For example, one could consider the trivial case of a moving point charge, ~j(~x, t) = q~v(t)δ(3)(~x−~x(t)).
More generally, we can use the Maxwell equations to give

4π

c
~j = ~∇× ~B − 1

c

∂ ~E

∂t
=⇒ ~j · ~E =

c

4π

[
~E · (~∇× ~B)− 1

c
~E · ∂

~E

∂t

]
.

Mathematical Interlude:

~∇( ~E × ~B) = ∇k(ElBm)εklm

= [(∇kEl)Bm + El(∇kBm)] εklm

= ~B · (~∇× ~E)− ~E · (~∇× ~B).

Thus,

~j · ~E =
c

4π

[
~B · (~∇× ~E)− ~∇( ~E × ~B)− 1

c
~E · ∂

~E

∂t

]
,

but by Maxwell’s equations, ~∇× ~E = −1

c

∂ ~B

∂t
, so we have

~j · ~E =
c

4π

[
−1

c
~B · ∂

~B

∂t
− ~∇( ~E × ~B)− 1

c
~E · ∂

~E

∂t

]

=
c

4π

[
− 1

2c

∂

∂t

(
~E2 + ~B2

)
− ~∇( ~E × ~B)

]
= − 1

8π

∂

∂t

(
~E2 + ~B2

)
− c

4π
~∇( ~E × ~B).

The work done by the field is now

P =

∫
V

d3~x

[
1

8π

∂

∂t

(
~E2 + ~B2

)
− c

4π
~∇( ~E × ~B)

]
.

Using Stokes’ theorem, we can write the second term as a surface integral to get

P = − ∂

∂t

∫
V

d3~x− 1

8π
( ~E2 + ~B2)− c

4π

∫
∂V

( ~E × ~B) · n̂da.

This result is called Poynting’s theorem, and is eqiuivalent to conservation of energy. Defining the
Poynting vector as

~S :=
c

4π
( ~E × ~B),
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and recalling the energy density is

U =
1

8π

(
~E2 + ~B2

)
,

we get

P =

∫
v

d3~x~j · ~E = − ∂

∂t

∫
V

d3~xU −
∫
∂V

~S · n̂da.

In differential form, this equation is
∂U
∂t

+ ~∇~S = −~j · ~E.

In the absence of sources (~j = ~0), the rate of change of energy in a volume V is equal to the energy
flux through the surface ∂V of V .

We can also look at the force exerted by the EM field on a charge and current density. This is
given by the Lorentz force law.

~F =

∫
V

d3~x(ρ(~x) · ~E +
~j

c
× ~B).

For a single point charge at ~x′, ρ(~x) = qδ(3)(~x− ~x′) and the Lorentz force is

~F = q ~E +
~v

c
× ~B.

Recalling that jµ = (cρ,~j), if we let fµ = Fµνjν , we find that

f0 = F 0kjk = ~E ·~j,

fk = F k0j0 + F kljl = cρEk − εklmBmjl =

[
ρ ~E +

~v

c
× ~B

]
k

.

This combines both the work and Lorentz force into the field strength tensor.

Using the fact that jµ =
c

4π
∂νF

νµ, we have

fµ = Fµνjν = Fµν j
ν =

c

4π
Fµν ∂ρF

ρν .

Using the product rule and the previous cyclic result for the field strength tensor, we can write this as

fµ =
c

4π

[
∂ρ(F

µ
ν F

ρν)− 1

4
∂µ(F νρFνρ)

]
:= −c∂νTµν ,

where Tµν is the stress-energy-momentum tensor, or stress-energy tensor for short.

Tµν =
1

4π

[
Fµρ F

ρ
ν −

1

4
δµνF

ρ
σF

σ
ρ

]
.

We find that

T00 =
1

8π
( ~E2 + ~B2) = U ,

T0k =
1

4π
( ~E × ~B)k =

1

c
Sk,

T ij =
1

4π

[
EiEj +BiBj −

1

2
δij

(
~E2 + ~B2

)]
= σij ,

the last equation being the Maxwell stress tensor for an EM field. I think these equations make the
choice of name - “stress-energy-momentum tensor” - quite obvious.
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2 Solutions to the Covariant Maxwell Equations

2.1 Homogenous Solutions

We now have a covariant formulation for the Maxwell equations

∂µF
µν =

4π

c
jν ,

∂µG
µν = 0 ⇐⇒ ∂µF νρ + ∂νF ρµ + ∂ρFµν = 0,

and we can now attempt to find solutions to these equations. Acting on the homogenous equation
with ∂µ, we find

∂µ(∂µF νρ) + ∂ν(∂µF
ρµ) + ∂ρ(∂µF

µν) = 0.

Recognising that ∂µF
ρµ = −∂µFµρ and using the inhomogenous equation, we get

∂µ∂
µF νρ − 4π

c
∂νjρ +

4π

c
∂ρjν = 0.

The quantity ∂µ∂
µ is the d’Alembert box operator, so we have

�F νρ =
4π

c
(∂νjρ − ∂ρjν).

Each component of F νρ satisfies this differential equation. e.g.

�F 10 = �E1 =
4π

c

(
∂1j0 − ∂0j1

)
=

4π

c

(
∂1(cρ)− 1

c

∂j1
∂t

)
= −4π

(
∇1ρ+

1

c2
∂j1
∂t

)
,

�F 12 = −�B3 =
4π

c

(
∂1j2 − ∂2j1

)
= −4π

c

(
∇1j2 −∇2j

1
)
.

These examples imply that

� ~E = −4π

(
~∇ρ+

1

c2
∂~j

∂t

)
,

� ~B =
4π

c
~∇×~j.

If we now consider the four-potential Aµ = (φ, ~A), we have

Fµν = ∂µAν − ∂νAµ, ∂µF
µν =

4π

c
jν ,

=⇒ 4π

c
jν = ∂µ(∂µAν − ∂νAµ) = ∂µ∂

µAν − ∂ν(∂µA
µ).

Recalling the Lorenz gauge condition ∂µA
µ = 0, we have

�Aν =
4π

c
jν , ⇐⇒ �φ = 4πρ, � ~A =

4π

c
~j.

These are wave equations of the form

�ψ(~x, t) =

(
1

c2
∂2

∂t2
− ~∇2

)
ψ(~x, t) = 4πf(~x, t).

If we consider the homogenous equation, where jµ = 0 ⇐⇒ f(~x, t) = 0, we have

�ψ(~x, t) = 0

which is the wave equation for an electromagnetic field in vacuum. The solutions are the monochro-
matic plane waves

ψ(~x, t) = e−i(
~k·~x±ωt)

corresponding to waves moving in the ∓~kk direction.
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2.2 Green’s Functions and the Inhomogenous Wave Equation

Perhaps the most general way of thinking about solving equations such as the inhomogenous wave
equation (in terms of the four-vector x)

�ψ(x) = 4πf(x)

is to consider a Green’s function. Finding a Green’s function of a differential operator is basically
equivalent to finding an inverse operator. In the case of matrices and vectors, one could imagine
having the equation

A~v = ~u

where only A and ~u are known. If we can find A−1, then since AA−1 = I, we know

A(A−1~u) = I~u = ~u,

which implies that A−1~u is a solution of the equation A~v = ~u. We can use a similar technique for
the case of differential operators, which are linear operators like matrices. If we consider the wave
equation, a Green’s function D0 for the d’Alembert operator will satisfy

�D0(x− x′) = δ(4)(x− x′),

which would mean that

ψ(x) =

∫
D0(x− x′)4πf(x′)d4x′

is as solution, since

�
∫
D0(x− x′)4πf(x′)d4x′ =

∫
�D0(x− x′)4πf(x′)d4x′ =

∫
δ(4)(x− x′)4πf(x′)d4x′ = 4πf(x).

In general a Green’s function will not be unique, and indeed we find two Green’s functions for this
wave equation

Dadv(x) = −Θ(−x0)

∫
d3~k

(2π)3
ei
~k·~x

sin
(
|~k|x0

)
|~k|

,

Dret(x) = Θ(x0)

∫
d3~k

(2π)3
ei
~k·~x

sin
(
|~k|x0

)
|~k|

,

where Θ(x) is the Heavyside step function. The naming schemes will become clearer when we discuss
the properties of each. We can explicitly evaluate these Green’s functions to find

Dret(x− x′) = − 1

4π|~x− ~x′|
δ((x0 − x′0)− |~x− ~x′|),

Dadv(x) = Dret(−x) =
1

4π|~x− ~x′|
δ((x0 − x′0) + |~x− ~x′|).

These Green’s functions measure the response4 felt at a point (x0, ~x) from the field generated at the
point (x′0, ~x

′). Note that this fluctuation of the field travels through both space and time. The retarded
Green’s function measures responses propagating forward in time, i.e. t − t′ > 0 and the advanced
Green’s function measures responses propagating backwards in time, i.e. t− t′ < 0.5

4The Green’s function is in fact exactly a measure of how the system responds to an instantaneous pulse, hence the
use of a delta function. It is also called a two-point correlation function, or “propagator” in QFT, since it measures the
response to a fluctutation at one point in spacetime at a second point in spacetime, i.e. how a wave “propagates”.

5The advanced Green’s function may seem unphysical, since we usually take initial conditions and want to see how
a system evolves forward in time. It is actually used when we know the end state of a system and want to see where
the field came from. These are the kinds of calculations used in particle colliders like those at CERN, where the end
products and fields of particle collisions is known and one wants to work backwards to find the different interactions that
took place. Of course, this treatment must usually done using a Quantum Field Theory, rather than a Classical Field
Theory.

10



Defining a retarded time tret = t− 1
c |~x− ~x

′|, we can write the retarded Green’s function as

Dret(~x− ~x′, t− t′) =
δ(tret − t′)
4π|~x− ~x′|

.

Similarly, an advanced time tadv = t+ 1
c |~x− ~x

′| yields

Dadv(~x− ~x′, t− t′) =
δ(tadv − t′)
4π|~x− ~x′|

.

3 Moving Point Charges

3.1 Liénard-Weichert Potential

Now that we have an expression for our Green’s functions, we can attempt to find solutions of the
inhomogenous Maxwell equations

�Aµ(x) =
4π

c
jµ(x).

We can find solutions if jµ(x) is known. One very important case is that of a moving point charge,
where

ρ(~x, t) = qδ(3)(~x− ~r(t)),
~j(~x, t) = q~v(t)δ(3)(~x− ~r(t)),

where ~r(t) is the trajectory of the point charge and ~v(t) is its velocity. Defining a four-velocity
Uµ = (c,~v(t)), we can write these equations as

jµ(x) = (ρ,~j) =
q

γ
Uµδ(3)(~x− ~r(t)).

Introducing the four-trajectory rµ(τ) parametrised by the proper time τ of the point charge such that
r0(τ) = ct, rk(τ) = ~rk(t), we have, with dτ = dt

γ(t) ,

jµ(x) =

∫
dt

γ
δ(t− 1

c
r0(τ))

3∏
k=1

δ(xk − rk(τ))Uµ(τ) = qc

∫
dτδ(4)(x− r(τ))Uµ(τ).

However, we know that the solutions to the wave equation are given by

Aµ(x) =
4π

c

∫
Dret(x− x′)jµ(x′)d4x′,

so we have the equation

Aµ(x) = qc
4π

c

∫
d4x′Dret(x− x′)

∫
dτδ(4)(x′ − r(τ))Uµ(τ)

= qc
4π

c

∫
d4x′

1

2π
Θ(x0 − x′0)δ[(x− x′)2]

∫
dτδ(4)(x′ − r(τ))Uµ(τ)

= 2q

∫
dτΘ(x0 − r0(τ))δ[(x− r(τ)2]Uµ(τ).

Noting that we only get contributions to Aµ when (x− r(τ0))2 = 0 in the delta function for some τ0,
we can find the contributing values using the generalised scaling property of the Dirac delta,∫

f(x)δ(g(x))dx =
∑

g(xi)=0

f(xi)

|g′(xi)|
.

This yields the equation

Aµ(x) =
qUµ(τ0)

Uρ(τ0)(x− r(τ0))ρ

which is the Liénard-Weichert Potential. From this, we can compute the ~E and ~B fields due to the
moving point charge.
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3.2 Generated Electromagnetic Fields

Now that we know the four-potential Aµ(x) for a moving point charge, called the Liénard-Weichert
potential, we can find the electric and magnetic fields from the field strength tensor

Fµν = ∂µAν − ∂νAµ.

Using our expression for Aµ(x), we can find by using integration by parts and the chain rule that

Fµν(x) = 2q

∫
dτΘ(x0 − r0(τ))δ[(x− r(τ))2]

d

dτ

[
(x− r(τ))µUν − (x− r(τ))νUmu

Uρ(x− r(τ))ρ

]
.

Noting as before that the only contribution comes from (x− r(τ0))2 = 0, we have

Fµν(x) =
q

Uρ(τ0)(x− r(τ0))rho

d

dτ

[
(x− r(τ))µUν(τ)− (x− r(τ))νUµ

Uρ(τ)(x− r(τ))ρ

]
τ=τ0

.

For a particle trajectory rµ(τ), r0(τ0) = ctret. Defining the quantity R = |x− r(τ0)|, we have

(x− r(τ0))µ = R(1, n̂)

for a unit vector n̂. Also, we have from its definition

Uµ = γ(c,~v) = γc(1, ~β) =⇒ dUµ

dτ
= γc(γ̇, γ̇ ~β + γ ~̇β).

We thus have
Uρ(x− r(τ))ρ = γc(1, ~β) ·R(1, n̂) = γcR(1− ~β · n̂).

Evaluated at tret, the electric field is given by

Ek =
q

R2γ2(1− ~β · n̂)3
(n̂− ~β)k︸ ︷︷ ︸

velocity field component

+
q

Rc(1− ~β · n̂)3

(
n̂ · ~β(n̂− ~β)k − (1− ~β · n̂)βk

)
︸ ︷︷ ︸

acceleration field component

.

This can also be written as

Ek =
q

R2γ2(1− ~β · n̂)3
(n̂− ~β)k +

q

Rc(1− ~β · n̂)3

[
n̂× (n̂− ~β)× ~β

]
k
.

3.3 The Relativistic Larmor Formula

This expression for the electric field leads to an equation for the power radiated by the moving charge,

P (t) =
2

3

q2

c

[
γ6
(
~̇β2 − (~β × ~̇β)2

)]
tret

,

which is the relativistic Larmor formula for the power radiated, including relativistic effects. It can
also be written in terms of the four-momentum pµ = (Ec , ~p) as

P (t) = −2

3

q2

m2c3

[
dpµ
dτ

dpµ

dτ

]
tret

.

In the non-relativistic limit, |~β| << 1, the equation becomes

P (t) ' 2

3

q2

c
~̇β2.
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There are some special cases of the Larmor formula, one being that of linear motion where the velocity

and acceleration are parallel, i.e. ~β ‖ ~̇β. In this case,

P (t) = −2

3

q

c
γ6 ~̇β

∣∣∣
tret

=
3

2

q2

m2c3

(
dE
dx

)2
∣∣∣∣∣
tret

.

This gives the power radiated/lost per distance travelled due to rectilinear motion. We see that accel-
erating a charge has an added cost to overcome energy loss due to the particle’s motion.

Another special case is circular motion, where the velocity and acceleration are perpendicular, i.e.
~β ⊥ ~̇β =⇒ ~β · ~̇β = 0. In this case, v = |~v| = ωr is constant. If the velocity is

~v(t) = (r cos(ωt), r sin(ωt), 0),

we have ~̇v(t) = −ω2~v(t) and thus

P (t) =
2

3

q2

c3
γ4ω4r2.

The loss of energy per period is

∆E =
2π

ω
P (t) =

4π

3
q2β3 γ

4

r
.

Classically, an electron orbiting in an atom would be unstable. It was postulated that the electron
would radiate no energy in order to keep a stable orbit. The need for this assumption was removed by
treating the energies of electrons quantum mechanically, with fixed angular momentum.

3.4 Angular Distribution of Radiation

The energy radiated in an area R2dΩ is given by dE = [~S · n̂R2]tretdΩdtret.

=⇒ dE
dΩ

=

∫ t2

t1

[~S · n̂R2(1− ~β · n̂)]tretdt =

∫ t2

t1

dP

dΩ
dt.

where we have used tret = (1− ~β · n̂)t. Supposing that ~β and ~̇β vary slowly over this time interval, we
have

dE
dΩ

= ∆t
dP

dt
= ∆t

q2

4πc

[
(n̂× ((n̂− ~β)× ~̇β))2

(1− ~β · n̂)5

]
.

For linear motion, ~β ‖ ~̇β, the radiation in direction n̂ making an angle θ with the direction of motion
is

dP

dΩ
=
q2|~̇β|2

4πc

sin2 θ

(1− β cos θ)5
'

β<<1

q2|~̇β|2

4πc
sin2 θ.

3.5 The Case of a General Source Charge

We now consider the radiation from a general source jµ = (cρ,~j). The solution to the wave equation
for this source is

Aµret(x) =
4π

c

∫
d4x′Dret(x− x′)jµ(x′),

so we have

ρret(~x, t) =

∫
d3~x′

1

|~x− ~x′|
ρ(t− 1

c |~x− ~x
′|, ~x′),

~Aret(~x, t) =
1

c

∫
d3~x′

1

|~x− ~x′|
~j(t− 1

c |~x− ~x
′|, ~x′).
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In the far field, for r := |~x| >> |~x′|, we have

~Aret(t, ~x) ' 1

rc

∫
d3~x′~j(t− r

c , ~x
′).

Using the continuity equation ρ̇+ ~∇ ·~j = 0, we have

~Aret(t, ~x) =
1

rc

d

dt

∫
d3~x′ρ(t− r

c , ~x
′)~x′.

However, this integral is simply the electric dipole moment for the charge density ρ. Thus,

~Aret(t, ~x) ' 1

rc
~̇d(t− r

c ).

From this we can find the electric and magnetic fields to be

~B ' − 1

rc2
n̂× ~̇d(t− r

c ),

~E ' −cn̂× ~B =
1

rc2
n̂× (n̂× ~̈d(t− r

c ).

The radiated power is found from the Poynting vector and is

~S =
c

4π
~E × ~B ' 1

4πr2c2
∣∣n̂× ~̈d

∣∣2n̂.
Since ~S ‖ n̂, the power is radiated radially, but not uniformly. Assuming the dipole oscillates in the
z-direction, then

~S =
1

4πr2c2
∣∣ ~̈d∣∣2 sin2 θn̂.

The total power radiated is

P =

∫
d2~r · ~S =

2

3

∣∣ ~̈d∣∣2
c2

.

4 Electromagnetism in Linear Media

4.1 The Displacement and Magnetising Fields

Up to now, we’ve been considering the Maxwell equations in a vacuum,

~∇ · ~E =
ρ

ε0
, ~∇ · ~B = 0,

~∇× ~E = −∂
~B

∂t
, ~∇× ~B = µ0

~j + µ0ε0
∂ ~E

∂t
.

Defining the displacement field ~D = ε0
~E+ ~P where ~P = ε0χe ~E is the polarisation of the linear medium,

and defining the magnetising field ~H =
1

µ0

~B− ~M where ~M =
1

µ0

χm
χm + 1

~B is the magnetisation of the

linear medium, we have
~∇ · ~D = ρfree, ~∇ · ~B = 0,

~∇× ~E = −∂
~B

∂t
, ~∇× ~H = ~jfree +

∂ ~D

∂t
.

Note that ρfree and ~jfree are the free current density and current not bound by the medium, χe is
the electric susceptibility, and χm is the magnetic susceptibility. We can also write these in terms of
ε = (1 + χe)ε0, the permittivity of the medium, and µ = (1 + χm)µ0, the permeability of the medium
to get

~D = ε ~E, ~H =
1

µ
~B.
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4.2 Waves in Dielectric Media

In insulators and dielectric media, ρfree = 0 and ~jfree = ~0. Thus, we have

~∇ · ~E = 0, ~∇ · ~B = 0,

~∇× ~E +
∂ ~B

∂t
= ~0, ~∇× ~B − µε∂

~E

∂t
= ~0.

Differentiating the third equation and substituting for the fourth, we find expressions for the wave
equation for ~E and ~B;

µε
∂2 ~E

∂t2
− ~∇2 ~E = ~0, µε

∂2 ~B

∂t2
− ~∇2 ~B = ~0,

where the wave velocity is v =
1
√
µε

. We can find the solutions to these wave equations with the ansatz

~E(~x, t) = ~E0e
i(~k·~x−ωt),

however we must remember that the physical electric field is the real part of this expression. Inserting
the plane wave ansatz, we find

− 1

v2
(−iω)2 − (i~k)2 = 0 =⇒ ~k2 =

ω2

v2
.

We can find from the Maxwell equations that

~∇× ~E = −∂
~B

∂t
=⇒ i~k × ~E = iω ~B =⇒ ~k × ~E = ω ~B,

~∇ · ~E =⇒ ~k · ~E = 0, ~∇ · ~B = 0 =⇒ ~k · ~B = 0.

Thus, the wavevector ~k is orthogonal to both ~E and ~B, which are also orthogonal to each other. Note
also that since ~B = ~k × ~E, the magnetic field is entirely determined by the electric field.

4.3 Polarisation of Plane Waves

If we choose ~k to be along the z-axis, then we have ~E0 = (E0,x, E0,y, 0), where

E0,x = |E0,x|eiϕ, E0,y = |E0,y|ei(ϕ+δ).

We now distinguish some cases:

1. Linear polarisation: δ = 0 or δ = ±π. We have

Re[ ~E(~x, t)] = (|E0,x|x̂± |E0,y|ŷ) cos(kz − ωt+ φ).

2. Circular polarisation: δ = ±π
2

. For |E0,x| = |E0,y| = E0, we have

Re[ ~E(~x, t)] = E0(x̂ cos(kz − ωt+ ϕ)∓ ŷ sin(kz − ωt+ ϕ).

A phase offset of δ =
π

2
corresponds to right-circular polarisation, and δ = −π

2
corresponds to

left-circular poalrisation.

3. Elliptic polarisation: δ = ±π
2

, with |E0,x| 6= |E0,y|.

4. Tilted elliptic polarisation: δ takes an arbitrary value and |E0,x| 6= |E0,y|. The ellipse is tilted
away from being perpendicular to the z-axis.
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4.4 Energy Transport in Plane Waves

In SI units, the Poynting vector in a medium is given by

~S = ~E × ~H =
1

µ
~E × ~B.

The energy density is given by

U =
1

2

(
~H · ~B + ~E · ~B

)
=

linear media

1

2

(
1

µ
~B2 + ε ~E2

)
.

Both of these equations assume that we have already taken the real parts of ~E and ~B, since in general

Re[ ~E]× Re[ ~B] 6= Re[ ~E × ~B].

If the time dependence of a quantity is harmonic, i.e. ∝ eiωt, which is the case for the electric and
magnetic fields, then we can use time averaging over one period of oscillation, T . We define a time
average

〈f(t)〉 =
1

T

∫ t+T

t

f(t′)dt′.

With this definition, we have

Re[ ~E] · Re[ ~B] =
1

2
Re[ ~E · ~B∗].

Thus, we have 〈
~S
〉

=
1

2
Re[ ~E × ~H∗] =

linear media

1

2µ
Re[ ~E × ~B∗],

〈U〉 =
1

4
Re[ ~H · ~B∗ + ~E · ~D∗] =

linear media

1

4

(
1

µ
| ~B|2 + ε| ~E|2

)
.

Note also that 〈
~S
〉

= v U k̂.

4.5 Reflection and Transmission

At the interface of a two linear dielectric media, e.g. air and glass, air and water, etc. with wave
velocities v1 and v2, we have an incident, reflected, and transmitted wave given by

~EI,R,T (~x, t) = ~E0,I,R,T e
i(~kI,R,T ·~x−ωI,R,T t), ~BI,R,T (~x, t) =

~kI,R,T
v1,1,2

× ~EI,R,T (~x, t).

The integral form of the Maxwell equations and the conditions that the waves must be continuous at
the boundary give the results

ωI = ωR = ωT := ω,

~kI , ~kR, ~kT all in the same plane (First Law of Optics),

kI = kR =⇒ sin θR = sin θI (Law of Reflection),

kI sin θI = kT sin θT =⇒ n1

n2
=

sin θT
sin θI

Snell’s Law of Refraction,

where n =
c

v
is the refractive index of the medium.

16


	A Covariant Formulation of the Maxwell Equations
	Solutions to the Covariant Maxwell Equations
	Moving Point Charges
	Electromagnetism in Linear Media

